28,620 research outputs found

    Persistence and the Random Bond Ising Model in Two Dimensions

    Get PDF
    We study the zero-temperature persistence phenomenon in the random bond ±J\pm J Ising model on a square lattice via extensive numerical simulations. We find strong evidence for ` blocking\rq regardless of the amount disorder present in the system. The fraction of spins which {\it never} flips displays interesting non-monotonic, double-humped behaviour as the concentration of ferromagnetic bonds pp is varied from zero to one. The peak is identified with the onset of the zero-temperature spin glass transition in the model. The residual persistence is found to decay algebraically and the persistence exponent θ(p)≈0.9\theta (p)\approx 0.9 over the range 0.1≤p≤0.90.1\le p\le 0.9. Our results are completely consistent with the result of Gandolfi, Newman and Stein for infinite systems that this model has ` mixed\rq behaviour, namely positive fractions of spins that flip finitely and infinitely often, respectively. [Gandolfi, Newman and Stein, Commun. Math. Phys. {\bf 214} 373, (2000).]Comment: 9 pages, 5 figure

    Persistence in a Random Bond Ising Model of Socio-Econo Dynamics

    Full text link
    We study the persistence phenomenon in a socio-econo dynamics model using computer simulations at a finite temperature on hypercubic lattices in dimensions up to 5. The model includes a ` social\rq local field which contains the magnetization at time tt. The nearest neighbour quenched interactions are drawn from a binary distribution which is a function of the bond concentration, pp. The decay of the persistence probability in the model depends on both the spatial dimension and pp. We find no evidence of ` blocking\rq in this model. We also discuss the implications of our results for possible applications in the social and economic fields. It is suggested that the absence, or otherwise, of blocking could be used as a criterion to decide on the validity of a given model in different scenarios.Comment: 11 pages, 4 figure

    Activation gaps for the fractional quantum Hall effect: realistic treatment of transverse thickness

    Full text link
    The activation gaps for fractional quantum Hall states at filling fractions ν=n/(2n+1)\nu=n/(2n+1) are computed for heterojunction, square quantum well, as well as parabolic quantum well geometries, using an interaction potential calculated from a self-consistent electronic structure calculation in the local density approximation. The finite thickness is estimated to make ∼\sim30% correction to the gap in the heterojunction geometry for typical parameters, which accounts for roughly half of the discrepancy between the experiment and theoretical gaps computed for a pure two dimensional system. Certain model interactions are also considered. It is found that the activation energies behave qualitatively differently depending on whether the interaction is of longer or shorter range than the Coulomb interaction; there are indications that fractional Hall states close to the Fermi sea are destabilized for the latter.Comment: 32 pages, 13 figure

    Exact solution of a model of time-dependent evolutionary dynamics in a rugged fitness landscape

    Full text link
    A simplified form of the time dependent evolutionary dynamics of a quasispecies model with a rugged fitness landscape is solved via a mapping onto a random flux model whose asymptotic behavior can be described in terms of a random walk. The statistics of the number of changes of the dominant genotype from a finite set of genotypes are exactly obtained confirming existing conjectures based on numerics.Comment: 5 pages RevTex 2 figures .ep

    Evolutionary dynamics of the most populated genotype on rugged fitness landscapes

    Full text link
    We consider an asexual population evolving on rugged fitness landscapes which are defined on the multi-dimensional genotypic space and have many local optima. We track the most populated genotype as it changes when the population jumps from a fitness peak to a better one during the process of adaptation. This is done using the dynamics of the shell model which is a simplified version of the quasispecies model for infinite populations and standard Wright-Fisher dynamics for large finite populations. We show that the population fraction of a genotype obtained within the quasispecies model and the shell model match for fit genotypes and at short times, but the dynamics of the two models are identical for questions related to the most populated genotype. We calculate exactly several properties of the jumps in infinite populations some of which were obtained numerically in previous works. We also present our preliminary simulation results for finite populations. In particular, we measure the jump distribution in time and find that it decays as t−2t^{-2} as in the quasispecies problem.Comment: Minor changes. To appear in Phys Rev

    Persistence in the Zero-Temperature Dynamics of the Diluted Ising Ferromagnet in Two Dimensions

    Full text link
    The non-equilibrium dynamics of the strongly diluted random-bond Ising model in two-dimensions (2d) is investigated numerically. The persistence probability, P(t), of spins which do not flip by time t is found to decay to a non-zero, dilution-dependent, value P(∞)P(\infty). We find that p(t)=P(t)−P(∞)p(t)=P(t)-P(\infty) decays exponentially to zero at large times. Furthermore, the fraction of spins which never flip is a monotonically increasing function over the range of bond-dilution considered. Our findings, which are consistent with a recent result of Newman and Stein, suggest that persistence in disordered and pure systems falls into different classes. Furthermore, its behaviour would also appear to depend crucially on the strength of the dilution present.Comment: some minor changes to the text, one additional referenc

    Tests of Gravity from Imaging and Spectroscopic Surveys

    Get PDF
    Tests of gravity on large-scales in the universe can be made using both imaging and spectroscopic surveys. The former allow for measurements of weak lensing, galaxy clustering and cross-correlations such as the ISW effect. The latter probe galaxy dynamics through redshift space distortions. We use a set of basic observables, namely lensing power spectra, galaxy-lensing and galaxy-velocity cross-spectra in multiple redshift bins (including their covariances), to estimate the ability of upcoming surveys to test gravity theories. We use a two-parameter description of gravity that allows for the Poisson equation and the ratio of metric potentials to depart from general relativity. We find that the combination of imaging and spectroscopic observables is essential in making robust tests of gravity theories. The range of scales and redshifts best probed by upcoming surveys is discussed. We also compare our parametrization to others used in the literature, in particular the gamma parameter modification of the growth factor.Comment: 18 pages, 10 figures, to be submitte
    • …
    corecore