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Tests of Gravity from Imaging and Spectroscopic Surveys

Abstract
Tests of gravity on large scales in the Universe can be made using both imaging and spectroscopic surveys. The
former allow for measurements of weak lensing, galaxy clustering and cross correlations such as the integrated
Sachs-Wolfe effect. The latter probe galaxy dynamics through redshift-space distortions. We use a set of basic
observables, namely, lensing power spectra, galaxy-lensing and galaxyvelocity cross-spectra in multiple
redshift bins (including their covariances), to estimate the ability of upcoming surveys to test gravity theories.
We use a two-parameter description of gravity that allows for the Poisson equation and the ratio of metric
potentials to depart from general relativity. We find that the combination of imaging and spectroscopic
observables is essential in making robust tests of gravity theories. The range of scales and redshifts best probed
by upcoming surveys is discussed. We also compare our parametrization to others used in the literature, in
particular, the y parameter modification of the growth factor.
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Tests of gravity on large scales in the Universe can be made using both imaging and spectroscopic

surveys. The former allow for measurements of weak lensing, galaxy clustering and cross correlations

such as the integrated Sachs-Wolfe effect. The latter probe galaxy dynamics through redshift-space

distortions. We use a set of basic observables, namely, lensing power spectra, galaxy-lensing and galaxy-

velocity cross-spectra in multiple redshift bins (including their covariances), to estimate the ability of

upcoming surveys to test gravity theories. We use a two-parameter description of gravity that allows for

the Poisson equation and the ratio of metric potentials to depart from general relativity. We find that the

combination of imaging and spectroscopic observables is essential in making robust tests of gravity

theories. The range of scales and redshifts best probed by upcoming surveys is discussed. We also

compare our parametrization to others used in the literature, in particular, the � parameter modification of

the growth factor.

DOI: 10.1103/PhysRevD.81.023503 PACS numbers: 98.80.Es, 98.62.Sb

I. INTRODUCTION

General relativity (GR) plus the standard model of par-
ticle physics can only account for about 4% of the energy
density inferred from observations. By introducing dark
matter and dark energy, which account for the remaining
96% of the total energy budget of the Universe, cosmolo-
gists have been able to account for a wide range of obser-
vations, from the overall expansion of the Universe to
various measures of large-scale structure [1].

The dark matter/dark energy scenario assumes the va-
lidity of GR at galactic and cosmological scales and in-
troduces exotic components of matter and energy to
account for observations. Since GR has not been tested
independently on these scales, a natural alternative is that
GR itself needs to be modified on large scales. This pos-
sibility, that modifications of the law of gravity on galactic
and cosmological scales can replace dark matter and/or
dark energy, has become an area of active research in
recent years. Attempts have been made to modify GR
with a focus on galactic [2] or cosmological scales [3–5].
The Dvali-Gabadadze-Porrati (DGP) model [4], in which
gravity lives in a five-dimensional space-time, can produce
a late time acceleration of the Universe. Adding a correc-
tion term fðRÞ to the Einstein-Hilbert action [3] also allows
late time acceleration of the Universe to be realized.

In this paper we will focus on modified gravity (MG)
theories that are designed as an alternative to dark energy
(DE) to produce the present day acceleration of the
Universe. In these models, such as DGP and fðRÞ models,
gravity at late cosmic times and on large scales departs

from the predictions of GR. By design, successful MG
models are difficult to distinguish from viable DE models
using observations of the expansion history of the
Universe. However, in general they predict a different
growth of perturbations which can be tested using obser-
vations of large-scale structure (LSS) [6–21].
LSS in MG theories can be more complicated to predict,

but is also richer because different observables like lensing
and galaxy clustering probe independent perturbed varia-
bles. This differs from conventional DE scenarios where
the linear growth factor of the density field fixes all ob-
servables on sufficiently large scales. Theories of LSS in
these modified gravity models are still in their infancy.
Most studies have focused on probes of a single growth
factor with one or a few observables. Recent predictions
for discriminatory power of different observables could be
found in [22–26].
We study tests of gravity that can be made with a

combination of imaging and spectroscopic surveys Our
emphasis will be on model-independent constraints of
MG enabled by combining different observables.
Carrying out robust tests of MG in practice is challenging
as in the absence of a fundamental theory, the modifica-
tions to gravity are often parametrized by free functions, to
be fine tuned and fixed by observations. Recently, the
parametrized post-Friedmann approach has been suggested
as an attempt to describe a variety of gravity theories [27].
In Sec II, we describe the ingredients of our modeling—

parametrization of the MG models (Sec. II A), observables
used for forecasting (Sec. II B), and covariances between
observables (Sec. II C). In Sec. III, forecasts for upcoming
imaging and spectroscopic surveys are presented. We con-
clude in Sec. IV. The derivation of formulas for some of the
covariances used in the main text are given in Appendix A
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and results for alternative MG parametrization in
Appendix B.

II. METHOD

A. Parametrization of modifications to gravity

We are concerned with subhorizon scales that satisfy the
quasistatic, Newtonian approximation. In this regime, two
effective functions characterize the departure of modified
gravity theories with scalar perturbations from general
relativity. We neglect additional fields that are expected
to play a role on small, nonlinear scales to drive the theory
to GR. Scalar perturbations in a homogeneous and iso-
tropic universe can be described in the Newtonian (longi-
tudinal) gauge by two potentials �ðt;xÞ and �ðt;xÞ as
follows: [28]

ds2 ¼ �½1þ 2�ðt;xÞ�dt2 þ a2ðtÞ½1� 2�ðt;xÞ�
� ½d�2 þ rð�Þ2d�2�; (1)

where aðtÞ is the scale factor and rð�Þ the comoving
angular-diameter distance. Throughout this paper we as-
sume that the Universe is spatially flat, so that rð�Þ ¼ �. In
GR, neglecting sources of the anisotropic stress in the
energy-momentum tensor, the relation � ¼ � holds
[28]. Moreover, the curvature potential � is related to the
mass density distribution �ða;xÞ ¼ ��ðaÞ�ða;xÞ through
the Poisson equation, which can be altered in MG theories.
We assume that the Fourier-space analogue of the Poisson
equation becomes

� k2�ða;kÞ ¼ 4�a2GgðkÞ ���ða;kÞ; (2)

where GgðkÞ is the effective gravitational constant. The
relation between the curvature potential � and the
Newtonian potential � in MG theories is parametrized as

�ðkÞ ¼ �

�
: (3)

There are a variety of parametrization of MG in the litera-
ture; the one described above has been suggested by a
number of authors [25,26,29]. A more general description
of modified gravity models via a parametrized-post-
Friedmann approach [27] extends to the superhorizon re-
gime, but we opt for the two free parameters described
above as we restrict ourselves to the quasistatic Newtonian
regime. It is expected to be a generic feature of MG that the
linear growth of structure becomes scale dependent and its
time evolution gets changed with respect to the GR case
[27].

The simplest possibility is that the functions gðkÞ and
�ðkÞ do not depend either on time or on scale, hence we
denote gðkÞ ¼ g0 and �ðkÞ ¼ �0. In GR both parameters
are unity, which is their fiducial value throughout the paper.
Other parametrization will be discussed below; in some
cases a specific scale or time dependence allows for easier
constraints on modified gravity parameters.

The growth of structure in a cold dark matter dominated
universe with MG is given by

€�ða; kÞ þ 2HðaÞ _�ða; kÞ � gðkÞ
�ðkÞ 4�G ���ða; kÞ ¼ 0; (4)

where the expansion history, given by the Hubble parame-
ter H ¼ _a=a, will be taken to be identical to that in the
standard �CDM cosmology. The growth of structure, de-
scribed by the evolution of �ða; kÞ as given in Eq. (4),
depends on the ratio of gðkÞ and �ðkÞ. The linear growth
factor DðaÞ � �ða; kÞ=�ðai; kÞ, which describes evolution
of matter density perturbations [see Eq. (4)] relative to their
initial values a ¼ ai, is sensitive to this ratio. The relevant
growth factor for matter peculiar velocities (in fact, its
divergence) relative to the density evolution is given by
fðaÞ � d lnD

d lna .

We also consider a popular parametrization of MG that
is based on the growth exponent � in the growth rate
function fðaÞ [16,17]. For GR with a cosmological con-
stant it can be expressed as fðaÞ ¼ �mðaÞ�, where � ¼
0:55 and �mðaÞ is the total matter density parameter. For
the DGP model the growth exponent is � ¼ 0:68 [16].
Other parametrization are discussed in Appendix B.
The sensitivity of the growth factor DðaÞ and the growth

rate function fðaÞ to�0 is shown in the Fig. 1. The effect of
MG appears to be significant as for the redshift range we
are interested in (z < 1:5) the change of DðaÞ is �2% and
fðaÞ is�0:5% if g0 is changed by 1% (the effect of �0 has
the same effect but with opposite sign). If the growth
exponent parametrization is employed the change in
DðaÞ and fðaÞ is significantly smaller. For comparison
we also show the response of DðaÞ and fðaÞ to the change
of the dark energy equation of state parameters w0 and w1

defined as w ¼ w0 þ w1ð1� aÞ.

B. Observables

We consider the signal from weak gravitational lensing
together with galaxy clustering in redshift space. In metric
theories of gravity the light deflection angle � is given by
the transverse gradient of the sum of the metric potentials:
�ð�Þ ¼ r?ð�þ�Þ (see e.g. [30]). Therefore, observed
shapes of galaxies and their correlations as described by
weak lensing power spectra are dependent on both metric
potentials. The clustering of matter is governed by the
growth equation, Eq. (4), which is dependent only upon
the Newtonian potential. Different combinations of the
information from weak lensing and redshift-space galaxy
clustering has been used to forecast tests of MG models
[22–24].

1. Weak gravitational lensing

Weak gravitational lensing is due to the matter distrib-
uted along a line of sight between observer and distant
galaxies. It causes distortions of galaxy images as well as
introduces spatial correlations between their distorted
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shapes. Furthermore, foreground galaxies which trace lens-
ing mass are correlated with shapes of lensed background
galaxies. Therefore, for weak lensing we use two observ-
ables—the correlations between shapes of galaxies (cos-
mic shear) quantified by its power spectrum C		ðlÞ and
correlations between the foreground galaxy distribution
and shapes of background galaxies (galaxy-galaxy lensing)
described by the Cg	ðlÞ cross-power spectrum. We use the

convergence field 	 for simplicity as the power spectra
defined below for 	 are identical to the shear power spectra
[31]. It is given by: 	ð�Þ � 1

2r��ð�Þ. The relation between
the convergence and the metric potentials is given by the
line-of-sight projection:

	ð�Þ ¼ 1

2

Z zs

0

dz

HðzÞ
rðzÞrðzs; zÞ

rðzsÞ r2
�ð�þ�Þ; (5)

where rðzÞ is the comoving angular-diameter distance be-
tween observer and a lens at redshift z. We take the sources
to lie at redshift zs.

The metric potentials are related to the mass distribution
as given by Eqs. (2) and (3), so the lensing power spectra
can be expressed in terms of the three-dimensional mass
power spectrum P��ða; kÞ. In the small-sky-patch limit (we
work with scales smaller than �6� or l > 30), the Limber
approximation [32] gives

C	i	j
ðlÞ ¼ 9

4
�2

mH
4
0

Z 1

0

dz

HðzÞ
1

a2ðzÞ
�
gðkÞ 1þ �ðkÞ

�ðkÞ
�
2

� P��ðk; zÞWLðz; ziÞWLðz; zjÞ; (6)

where the lensing weight function

WLðz; zkÞ ¼
Z
zk

dzk
dnb
dzk

rðzk; zÞ
rðzkÞ ; (7)

depends on the geometry and the redshift distribution of
lensed galaxies dnb=dz. The three-dimensional wave num-

ber k is given by k ¼ l=rðzÞ. We use lensing tomography
[33] by dividing the galaxy distribution into Nz bins in
redshift. Hence, instead of one projected power spectrum
we obtain NzðNz þ 1Þ=2 power spectra C	i	j

ðlÞ that carry
additional information about the growth of structure.
Similarly for the galaxy-shear power spectra we have

Cgi	j
ðlÞ ¼ 3

2
�mH

2
0

Z
zi

dzi
bðziÞ

aðziÞrðziÞ
dnf
dzi

�
gðkÞ 1þ �ðkÞ

�ðkÞ
�

� P��ðk; ziÞWLðz; zjÞ: (8)

We assume that the distribution of galaxies �g is a biased

tracer of the mass distribution � but their relation is local
and given by a bias factor b, which may depend on time,
�gðziÞ ¼ bðziÞ�ðziÞ. A nonzero Cgi	j

is obtained when

galaxies gi are in front of the source galaxies, which
requires i � j. We also compute the galaxy-galaxy pro-
jected power spectrum which will not be used as an ob-
servable but is required in making forecasts for MG by
means of the Fisher matrix approach. It is given by

CgigjðlÞ ¼ �ij

Z
zi

dzi
b2ðziÞ
r2ðziÞ

HðziÞ
�
dnf
dzi

�
2
P��ðk; ziÞ; (9)

where we have assumed that galaxies in two redshift bins
are not correlated with each other, a good approximation
for wide enough redshift bins.
Note that the ‘‘observed’’ power spectra differ from the

spectra in Eqs. (6), (8), and (9) because the effect of
discrete sampling of the underlying convergence and gal-
axy density fields should be taken into account. It leads to
shot (shape) noise terms in the case of the ‘‘observed’’
galaxy (shear) power spectra

Ĉ gigj ¼ Cgigj þ �ij=n
2d
g ; (10)

Ĉ 	i	j
¼ C	i	j

þ 
2
e�ij=n

2d
g ; (11)

FIG. 1 (color online). Sensitivity of the growth function DðaÞ and the growth rate fðaÞ to the modified gravity parameter g0 (left
panel), growth exponent � (middle panel), and the dark energy equation of state parameters w0 and w1 (right panel) as a function of
redshift.
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Ĉ gi	j
¼ Cgi	j

; (12)

where n2dg is the projected density of galaxies. The shape

noise term, proportional to 
e, accounts for the intrinsic
ellipticities of galaxies and its value (per component) is

taken to be 0:4=
ffiffiffi
2

p
. The cross-power spectra Cgi	j

are

immune to the discrete sampling noise.
Modifications to GR enter the projected power spectra

through the lensing-specific factor gðkÞ 1þ�ðkÞ
�ðkÞ , which is

responsible for the relation between the mass distribution
and the metric potentials. Moreover, the evolution of struc-
ture as expressed by growth functions DðaÞ and fðaÞ is
affected by changes in gravity as a result of modifications
to Eqs. (2) and (3).

2. Galaxy redshift-space power spectrum

Spatial distribution of galaxies, described by its power
spectrum PggðkÞ is expected to be isotropic. However, line-
of-sight distances based on observed redshifts are affected
by galaxy peculiar velocites which distort distribution of
galaxies along the line of sight. The radial component of
peculiar velocities cause the observable redshift-space gal-

axy power spectrumPðsÞ
ggðk;�kÞ to be ‘‘squashed’’ along the

line of sight on large scales (in the linear regime) and to
produce pronounced ‘‘finger-of-God’’ features on small
scales (in the nonlinear regime) [34,35]. The directional

dependence of PðsÞ
gg is given by �k � kk=k, which depends

on the angle between a wave vector k and the line-of-sight
direction.

Although the picture is more complicated in reality (see
[36] for a detailed discussion), it is a good approximation
to decompose the redshift-space power spectrum in terms
of three isotropic power spectra relating the galaxy over-
density �g and peculiar velocities v: the galaxy power

spectrum PggðkÞ, the velocity power spectrum PvvðkÞ and
the cross-power spectrum PgvðkÞ as follows: [34,36]

PðsÞ
ggðk;�kÞ ¼ ½PggðkÞ þ 2�2

kPgvðkÞ
þ�4

kPvvðkÞ�Fðk2�2
k


2
vÞ; (13)

where the term Fðk2�2
k


2
vÞ describes nonlinear velocity

dispersion effects. We set F � 1, which is a valid on
sufficiently large scales for forecasting purposes. As be-
fore, we assume that galaxies are biased tracers of mass
and the bias is time dependent but scale independent. What
we refer to as the velocity is actually the velocity diver-
gence, which is related to the mass distribution through the

continuity equation in the linear regime _�þr 	 v=a ¼ 0
(see [37]). Even if gravity is modified the continuity equa-
tion stays unchanged as long as there are no components
interacting with matter.

The redshift-space power spectrum in the form (13)
shows a distinctive pattern in its angular dependence which
is important in obtaining the component power spectra

from PðsÞ
gg; it has been used to measure PggðkÞ, PgvðkÞ and

PvvðkÞ power spectra from the 2dF and Sloan Digital Sky
Survey (SDSS) galaxy surveys [38,39]. The component
power spectra are expected to be nonlinear ones to match
the theory expectations well [36] and our covariance analy-
sis presented in Appendix A applies to this case. However,
our work focuses on the linear part of the structure growth
therefore the amplitude of the PgvðkÞ power spectrum

which is our observable may be expressed through the
linear growth rate f of the velocity field considered in
Sec. II A. Moreover, this decomposition is immune to the
scale dependence of both the galaxy bias and growth
functions as long as the angular structure is preserved [36].
The galaxy-velocity power spectrum Pgv which we

would like to use in constraining MGmodels is not a direct
observable. We construct an estimator of Pgv band-power

spectra as follows:

P̂ gvðkiÞ ¼ 1

Nk

X
k;�

Wgvð�ÞP̂ðsÞ
ggðk;�Þ; (14)

where the summation is carried out over modes in a spheri-
cal shell of radius ki, and the weight function Wgvð�Þ is
given by

Wgvð�Þ ¼ 15
4P2ð�Þ � 135

8 P4ð�Þ (15)

in terms of Legendre polynomials Plð�Þ of order l (see
Appendix A for motivation of this expression). The sum-
mation in Eq. (14) is carried out over modes contained in
spherical shells in Fourier space, which satisfy the follow-
ing condition: ki � �ki=2 � jkj � ki þ �ki=2. The vol-
ume Vk of this shell can be approximated by
Vk ¼ 4�k2i�ki. The fundamental volume can be expressed
in terms of the survey volume Vs as VF ¼ ð2�Þ3=Vs. The
number of modes in the volume Vk is then given by Nk ¼
Vk=VF. We assume that the power spectrum P̂ðsÞ

ggðk;�Þ does
not vary significantly in the shell as a function of jkj. We
also assume that the survey is large enough that the fun-

damental volume is much smaller than Vk. P̂gvðkiÞ is taken
as an observable in the Fisher matrix analysis. Note that the
redshift-space power spectrum does not get any additional
modifying factors in MG (except for the growth functions),
as the continuity equation on which the relation between

PðsÞ
gg and Pgv is based remains the same.

In the present work we focus on the galaxy-velocity
cross-power spectrum PgvðkÞ and the information it can

deliver about the growth of structure and galaxy bias. The
bias factor appears linearly in our observables, both in
projected power spectra as well as in PgvðkÞ, and is degen-
erate with the growth functions. However, when informa-
tion in PgvðkÞ is combined with tomographic

measurements of the weak lensing signal it should allow
for breaking this degeneracy [22].
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C. Fisher matrix analysis

In order to forecast the minimal attainable errors on
cosmological parameters we implement the Fisher infor-
mation approach [40,41] including parameters that de-
scribe modifications to gravity. We treat as observables
the following band-power spectra, as described in

Sec. II B: shear-shear power spectra Ĉ	i	j
ðlmÞ, galaxy-

shear power spectra Ĉgi	j
ðlmÞ, and galaxy-velocity

redshift-space power spectra P̂gvðkmÞ. The data vector of

the projected spectra can be written as D̂� ¼
fĈ	i	j

ðlmÞ; Ĉgi	j
ðlmÞ; P̂gvðzi; knÞg, where pairs of tomogra-

phy bin indices ði; jÞ: j 
 i with i, j ¼ 1; . . . ; Nz denote
independent power spectra. Each of them is comprised of
Nl band powers. There are also Nz redshift-space power
spectra with Nk band-powers each. Therefore, the total
number of observables in the Fisher matrix analysis is
NzðNz þ 1Þ � Nl þ Nz � Nk. The projected spectra and
the redshift space ones are independent so we may add
their Fisher matrices or merge them into one data vector as
above.

The observable power spectra depend on a set of pa-
rameters pi whose uncertainties we aim to forecast. They
are the following: �m (with �� adjusted to maintain
spatial flatness), initial power spectrum slope ns, normal-
ization of the power spectrum at the epoch of last scattering
�2

 ðk0 ¼ 0:002=MpcÞ, and a bias parameter in each red-

shift bin bðziÞ. In addition, we use a two-parameter ðg0; �0Þ
or one-parameter (�) description of departures from GR
(see Sec. II A for definitions). We do not change either the
dark matter or baryon physical density when other parame-
ters are varied to avoid adding extra information from the
change of the matter power spectrum shape.

The Fisher matrix, which measures the curvature of the
likelihood function in parameter space around its maxi-
mum, can be expressed for Gaussian distributed observ-

ables D̂� as [40]

Fij ¼
X
�;�

@D̂�

@pi

Cov�1ðD̂�; D̂�Þ @D̂�

@pj

: (16)

The marginalized 68%-level error on a parameter pi is then
given by 
2ðpiÞ ¼ ½F�1�ii, where F�1 is the inverse of the
Fisher matrix. In order to proceed with forecasting we need
to compute the covariance matrices in Eq. (16). We assume
that the band powers constructed from the convergence 	
and galaxy density �g are Gaussian, which restricts the

validity of our analysis to relatively large scales. An analy-
sis of non-Gaussian effects on the lensing power spectra
may be found in [42].

The Gaussianity assumption allows us to express the
covariance matrices of the ‘‘observed’’ power spectra as
follows:

Cov ½Ĉ	i	j
ðlÞ; Ĉ	m	n

ðlÞ� ¼ ½Ĉ	i	m
ðlÞĈ	j	n

ðlÞ
þ Ĉ	i	m

ðlÞĈ	j	n
ðlÞ�=fskyNðlÞ;

(17)

Cov ½Ĉgi	j
ðlÞ; Ĉgm	n

ðlÞ� ¼ ½ĈgigmðlÞĈ	j	n
ðlÞ�im

þ Ĉgi	n
ðlÞĈgm	j

ðlÞ�=fskyNðlÞ;
(18)

Cov ½Ĉgi	j
ðlÞ; Ĉ	m	n

ðlÞ� ¼ ½Ĉgi	m
ðlÞĈ	j	n

ðlÞ
þ Ĉgi	n

ðlÞĈ	j	m
ðlÞ�=fskyNðlÞ;

(19)

where fsky is fraction of the sky covered by the survey and

NðlÞ ¼ Plmax

lmin
ð2lþ 1Þ is the number of independent modes

in a passband between lmin and lmax. We assume that modes
in the power spectra are uncorrelated with each other.
In our analysis the binning in multipoles l is logarith-

mic—we assume 15 bins in the range of multipoles from
30< l < 1000. We choose this lower limit in order to be
able to apply the Limber approximation when computing
lensing power spectra. The upper limit is chosen to limit
the nonlinear contributions to the power spectrum.
Although at the high l considered there is a nonlinear
enhancement to the power spectrum, we use the linear
contribution as a conservative choice since both MG ef-
fects and biasing can become complex on small scales. We
will show some results that include the nonlinear
enhancement.
In Fig. 2 we show example shear-shear and galaxy-shear

power spectra along with the relevant errors from Eqs. (17)
and (18). The shape noise contribution to the observed
spectra is also shown. The power spectra are flat as we
take only the linear evolution of mass perturbations into

account. The errors on the power spectra scale with f�1=2
sky

(see Table I).

We are interested in both P̂gvðkiÞ and its covariance

Cov½P̂gvðkiÞ; P̂gvðkjÞ�. In order to compute the covariance

one could use a standard approach and express the covari-
ance by means of the survey’s effective volume Veff as


2
P̂gv

ðkiÞ ¼ 2V�1
eff P̂

2
gvðkiÞ [23,43,44]. The effective volume

accounts for the survey window function and in the sample
variance limit approaches the physical survey volume Vs

[23,43]. A drawback of this formula is that it underesti-

mates the expected noise of the estimator P̂gvðkiÞ and does
not account for the effect of discrete sampling of redshift
space with mass tracers. Let us consider the covariance
matrix for the galaxy-velocity band-power spectrum

P̂gvðkiÞ defined as
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Cov ½P̂gvðkiÞ; P̂gvðkjÞ� ¼ hP̂gvðkiÞP̂gvðkjÞi
� PgvðkiÞPgvðkjÞ: (20)

Using the Gaussian assumption this is given by

Cov½P̂gvðkiÞ; P̂gvðkjÞ� ¼ 2ð2�Þ3
2�k2i�kiVs

�ij

Z 1

�1

d�

4
W2

gvð�Þ

� PðsÞ
ggðk;�Þ: (21)

Next we plug Eq. (13) in to Eq. (21) and integrate out the
angular dependence to express the covariance matrix in
terms of the component power spectra Pgg, Pgv, Pvv as

follows:

Cov½P̂gvðkiÞ; P̂gvðkjÞ�

¼ 2ð2�Þ3
2�k2i�kiVs

�ij

105

18 304

�
3003

�
PggðkiÞ þ 1

�ng

�
2

þ 4420

�
PggðkiÞ þ 1

�ng

�
PgvðkiÞ þ 2 940P2

gvðkiÞ

þ 10PvvðkiÞ
�
147

�
PggðkiÞ þ 1

�ng

�
þ 226PgvðkiÞ

�

þ 24 185

51
P2
vvðkiÞ

�
; (22)

The finite volume of the survey Vs is accounted for as well
as the shot noise on small scales, which is inversely pro-

portional to the mass tracer’s density �ng. A detailed analy-

sis of the bias and covariance of band-power spectra

estimators P̂gg, P̂gv and P̂vv can be found in

Appendix A. Formulas for the covariance matrices of these
power spectra are presented in Eqs. (A16)–(A18).
In Fig. 3 we show galaxy and velocity power spectra,

PggðkÞ and PvvðkÞ, and the galaxy-velocity cross-power

spectrum PgvðkÞ together with their expected errors com-

puted as described above. The plot shows as an example
the power spectra from the Baryon Oscillation
Spectroscopic Survey (BOSS)-I survey redshift slice cen-
tered at z ¼ 0:6 and �z ¼ 0:2. The errors on PgvðkÞ are
larger by a factor�4 from these on PggðkÞ. The good news
about the cross-power spectrum is that it does not suffer
from the shot noise, which dominates the galaxy power
spectrum for k > 0:2h=Mpc. On the other hand, it is af-
fected by sample variance; for k < 0:03h=Mpc, PgvðkÞ has
limited information. From Fig. 3 we see that the scale
dependence of the fractional errors of PgvðkÞ and PvvðkÞ
power spectra bears a typical u-shape with a minimum
about k� 0:3h=Mpc. When making error forecasts we
limit our calculations to 0:015h=Mpc< k < 0:15h=Mpc
to stay within the linear regime, and use 15 logarithmic
band powers in this wave number range.
We compare uncertainties on redshift-space power spec-

tra to the results of [23], whose work is closely related to
ours. At the fixed scale k ¼ 0:05h=Mpc our method yields
errors on Pgg, which are �3 times smaller than presented

in [23]. On the other hand, errors on Pvv in our analysis are
�2:5 larger than those in [23].
The total signal-to-noise ratio (S/N) for PgvðkÞ is pre-

sented in Fig. 4 as a function of redshift. We also show the
S/N for the galaxy-shear power spectra Cg	 for the Dark

Energy Survey (DES) and a Stage-IV survey, assuming that
source galaxies are at fixed redshift—zs ¼ 1:1 for DES and
zs ¼ 1:9 for the Stage-IV. As expected, the S/N is the

TABLE I. Parameters of imaging surveys: sky coverage fsky in
sq. degs., galaxy surface density n2dg per sq. arcmin., the z0
parameter of the galaxy redshift distribution, and its mean hzi.

fsky n2dg z0 hzi
DES 5000 15 0.46 0.7

Stage-IV 20 000 30 0.8 1.2

FIG. 2 (color online). Examples of the shear-shear and galaxy-shear power spectra for the DES (left panel) and a Stage-IV survey
(right panel). From top: the galaxy-shear cross-power spectrum Cg	 with foreground galaxies at z ¼ 0:4 and background galaxies at

z ¼ 1, the shear-shear auto power spectrum C		. The shape noise contribution to the auto power spectrum for z ¼ 1 is shown as well
(dashed). Note that the shape noise and galaxy shot noise contribute to the variance of the power spectra.
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highest when lensing galaxies are about half way to the
source galaxies. The most robust constraints on MG are
expected when an imaging and spectroscopic survey both
have high S/N over a common redshift range. For DES and
BOSS-I this occurs at redshifts between about 0.4–0.5.

It is worth noting that the S/N for PgvðkÞ is inversely

related to the bias b of the galaxy sample. A joint analysis
by combining different population galaxy samples may be
helpful in beating down the sample variance on large scales
[45].

D. Surveys

One of the main scientific goals of upcoming multicolor
imaging surveys is to measure cosmological weak gravi-
tational lensing. We consider two surveys of this kind: the

DES [46], which is expected to begin data acquisition in
2011, and a generic Stage-IV survey [47], whose example
is the Large Synoptic Survey Telescope survey [48].
The surveys are characterized by sky coverage fsky,

surface density of lensed galaxies n2dg and the galaxy

redshift distribution. The sky coverage for the DES is taken
to be 5000 sq. degs. and for the Stage-IV survey 20000 sq.
degs. The redshift distribution of galaxies in the imaging

surveys is assumed to have the form dn=dz /
z2 exp½�ðz=z0Þ3=2�, where the values of z0 for surveys
under consideration are given in the Table I and the dis-
tributions are shown in the Fig. 4.
In order to measure the redshift-space power spectrum

PðsÞ
gg we consider spectroscopic surveys. The BOSS [49]

will target Luminous Red Galaxies (LRG) up to redshift

FIG. 4 (color online). Left panel: Redshift distribution of galaxies for imaging surveys specified in Table I. The distributions are
normalized so that the maximum value is unity. Right panel: The total signal-to-noise ratio for the galaxy-shear power spectra Cg	 as a

function of redshift of lensing galaxies. The background galaxies are located in the furthest bin—z ¼ 1:2 for DES, z ¼ 2:0 for a Stage-
IV survey. The galaxy-velocity power spectrum signal-to-noise is also shown for a BOSS-I-type survey (extended to z ¼ 1:9 with the
same sky coverage and galaxy density as the dotted curve).

FIG. 3 (color online). The galaxy-galaxy PggðkÞ (left panel), galaxy-velocity PgvðkÞ (central panel) and velocity-velocity PvvðkÞ
(right panel) power spectra at redshift 0:5< z < 0:7 for the BOSS-I survey. Their expected statistical errors are shown in red. We
assume 15 bins per decade in k, and do not include nonlinear effects.
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z� 0:7 and will cover a quarter of the sky. It will obtain
spectra of 1:5� 106 galaxies, which results in the number
density �ng ¼ 1:1� 10�4 Mpc�3. Based on the LRG sam-

ple from the SDSS survey one expects these objects to be
biased by a factor of b ’ 2 with respect to the mass
distribution. We assume that galaxies are uniformly dis-
tributed across the redshift range. In addition to the BOSS
survey (called BOSS-I throughout the paper) we consider a
futuristic version (dubbed BOSS-II here) with double the
sky coverage compared to BOSS-I (to keep up with the sky
coverage of Stage-IV survey), the same galaxy number
density, and extending to redshift z ¼ 1:1.

III. RESULTS

We quantify constraints on modifications to gravity by
combined measurements from upcoming imaging and
spectroscopic surveys. Imaging surveys (see Table I) pro-
vide us with the lensing signal via C		ðlÞ and Cg	ðlÞ. The
lensing power spectra depend on the modified gravity
parameters and (Cg	ðlÞ only) on redshift dependent galaxy

bias, as given by Eq. (8). The redshift-space power spec-
trum PgvðkÞ can be obtained from spectroscopic surveys. It

depends on the ratio of g0 and �0 and on galaxy bias.
Our fiducial cosmological model is given by �m ¼

0:26, the present value of the Hubble constant H0 ¼ h�
100 km=s=Mpc ¼ 72 km=s=Mpc, logarithmic slope of the
initial matter power spectrum n ¼ 0:96 and its amplitude
�2

 ðk0 ¼ 0:002=MpcÞ ¼ 2:41� 10�9 [50]. The redshift

dependent galaxy bias is a free parameter in each redshift
bin with a fiducial value b ¼ 2, corresponding to the LRG
sample from the SDSS. Fiducial values for parameters
which describe modifications to gravity are set to their
values in GR: g0 ¼ �0 ¼ 1 and � ¼ 0:55. We use statis-
tical priors on �m, �mh

2, �bh
2, and the power spectrum

parameters �2
 and n as expected from the cosmic micro-

wave background (CMB) measurements by the Planck
satellite [51]. We also assume that the distance-redshift
relation is unchanged from the standard �CDM cosmol-
ogy. Therefore, MG enters the equations through the
growth of structure and influences the weak lensing and
redshift-space power spectra, but does not affect the
distance-redshift relation. Last but not least, we present
uncertainties on cosmological parameters after uncertain-
ties in the other parameters were marginalized out.

In our analysis we use tomographic measurements
which require binning of the lensing and redshift-space
power spectra in redshift intervals. We assume bins with
width �z ¼ 0:2. Thus, for the lensing spectra from the
DES survey we use 6 redshift bins, while for the Stage-IV
survey we use 10 bins. For spectroscopic surveys we use
3 redshift bins for BOSS-I and 5 for BOSS-II. The pro-
jected density of spectroscopic galaxies is smaller by a
factor of a few tens than for the imaging surveys, as given
in Tables I and II. This affects the errors on Cgg large but

does not effect Cg	, which is one of our observables.

Our results on MG parameters constraints for the DES
and BOSS-I surveys are shown in Fig. 5. If we consider
weak lensing observables only (with CMB priors as de-
scribed above) the one-sigma error on g0 and�0 is
ðg0Þ¼
0:94 and 
ð�0Þ¼1:2. The weak constraints are due to the
strong covariance between these parameters and redshift
dependent bias. However, when combined with BOSS-I
the constrains on g0 and �0 improve to 
ðg0Þ¼0:12 and

ð�0Þ¼0:15, as shown in the Fig. 5. Thus, redshift-space
clustering data enables us to beat down errors on MG
parameters by about a factor of 8 (note that the constraints
on �m come mainly from the CMB prior). The BOSS-I
survey as presently planned will obtain redshifts for objects
with z<0:7. With the expanded redshift survey BOSS-II,
the accuracy would improve to
ðg0Þ¼0:086 and
ð�0Þ¼
0:11.
In order to use information on small scales from lensing

one needs to model the nonlinear evolution of the matter
density [59]. Nonlinear evolution boosts the lensing signal
C		ðlÞ by a factor of �4 on scales l�500–1000. Nu-
merical simulations which provide nonlinear matter power
spectra in MG theories are in their infancy but the first
attempts are encouraging, as shown by [52] for the fðRÞ
models and [53,54] for the DGP model. However, there is
no simple and model-independent parametrization of the
nonlinear corrections to the matter power spectrum in MG
models. This is due to the complexity of the evolution
equations and the existence of additional fields that drive
the theories to GR on small scales.
Therefore, we use only the linear power spectrum up to

l¼1000. This underestimates the signal-to-noise in lens-
ing. An alternative is to use the GR-based nonlinear power
spectrum, as our fiducial model is GR and small deviations
from the GR may not introduce substantial deviations in
the nonlinear evolution. In Fig. 5 we also show predicted
uncertainties in the MG parameters if we include such a
nonlinear power spectrum up to l¼1000 in the modeling
of the lensing spectra. The errors on both g0 and�0 drop by
almost a factor of 2 to 
ðg0Þ¼0:069 and 
ð�0Þ¼0:078,
respectively, compared to the linear case. This improve-
ment is partly due to breaking the degeneracy between
redshift dependent bias and MG parameters in the non-
linear regime. Throughout the paper we assumed that the
galaxy bias is scale independent. The introduction of the
scale-dependent bias on small scales would lead to weaker
constraints in the case of the nonlinear power spectrum

TABLE II. Parameters of the spectroscopic surveys: sky cover-
age fsky in sq. degs., minimum and maximum redshift limits of

the survey, zmin and zmax, survey comoving volume in Gpc3,
mean spatial density of galaxies �ng per Mpc3 and their mean

projected density n2dg per sq. arcmin.

fsky zmin zmax Vs �ng n2dg

BOSS-I 10 000 0.1 0.7 15.5 1:1� 10�4 0.05

BOSS-II 20 000 0.1 1.1 90 1:1� 10�4 0.14
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accounted for because the nonlinear growth and the scale
dependence of the bias could be correlated. Therefore,
even though we cannot separate linear from nonlinear
power, the attainable constraints on the modified gravity
parameters are expected to be within limits given by our
results for linear and nonlinear power spectrum as pre-
sented in Figs. 5 and 6 (dark gray and solid red contours,
respectively).

We also examine Stage-IV-type surveys like Large Syn-
optic Survey Telescope, which will have greater depth and
sky coverage.The predictions are presented in Fig. 6. With-
out spectroscopic information the constraints are 
ðg0Þ¼
0:19 and 
ð�0Þ¼0:24. If we combine imaging data with
the redshift-space power spectrum PgvðkÞ from the BOSS-

II survey, the constraints improve to 
ðg0Þ¼0:048 and

ð�0Þ¼0:062. Including nonlinear evolution in the lens-
ing spectra leads to about a factor of 2 improvement.

The MG parameters are strongly correlated with each
other as shown in Fig. 7. This is mostly due to the depen-

dence of the growth factor solely on the ratio of the MG
parameters. The dependence of the lensing power spectra
on a different combination of MG parameters [see Eq. (8)]
is not a strong effect in practice; moreover, the change in
growth can be compensated by a change in the redshift
dependent galaxy bias which substantially enhances corre-
lations. For a different MG parametrization like the one
presented in the Appendix B one expects a weaker degen-
eracy. By combining lensing data with the redshift space
PgvðkÞ the MG parameters are more reliably determined, as

their correlation with the galaxy bias parameters is signifi-
cantly reduced [see Eqs. (8) and (14)].
The importance of breaking the degeneracy between the

galaxy bias and the growth of structure is highlighted by
considering the dependence of uncertainties in g0 and �0

on the limiting projected scale lmax in the lensing power
spectra and the limiting physical scale kmax in the PgvðkÞ
power spectrum. For DES and BOSS-I we find that these
constraints are insensitive to lmax if linear spectrum is used;

FIG. 6 (color online). Forecasts as in Fig. 5 but for a Stage-IV imaging survey and the BOSS-II spectroscopic survey.

FIG. 5 (color online). Forecast constraints on the effective gravitational constant g0, the ratio of metric potentials �0, and�m for the
DES imaging survey and the BOSS-I redshift survey. Forecasts based on the linear lensing power spectra (shear-shear and galaxy-
shear) for DES are shown in light gray, and combined with the BOSS-I galaxy-velocity power spectrum in dark gray (blue). Light (red)
inner contours show the forecasts if the nonlinear lensing power spectrum is used. Other parameters are marginalized over, and all
contours show the 68% confidence level.
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the correlation coefficient between g0 and galaxy bias is
rðg0; biÞ � 0:8. The degeneracy can be broken by using the
nonlinear lensing power spectra which introduces scale-
dependent growth, improving the constraints by a factor of
�2 and lowering the correlation coefficient to rðg0; biÞ �
0:5. Another way to beat down errors is to increase the
range of k modes in the redshift-space power spectrum.
However, extending the range of k modes to kmax > 0:15
requires modeling nonlinear evolution and velocity disper-
sion effects. Throughout the paper we use linear lensing
power spectra with lmax ¼ 1000 and linear redshift-space
power spectrum with kmax ¼ 0:15h=Mpc. In this case
rðg0; biÞ � 0:8.

The bias value of a given galaxy sample is related to the
S/N ratio for the redshift-space power spectrum, as dis-
cussed in Sec. II C. Lower bias implies higher signal-to-
noise for PgvðkÞ, which is counterbalanced by a lower S/N

for Cg	 in the joint analysis. The net effect is that for the

fiducial bias b ¼ 1 the constraints on g0 and �0 are vir-
tually unchanged compared to the b ¼ 2 case which we
have used in the analysis. If a less biased sample with b ¼
0:5 is chosen, the predicted errors increase by 3%. The
fiducial bias value is therefore unimportant for the purpose
of this work.
We have used the ðg0; �0Þ parametrization of MG so far.

Another parametrization, based on the growth exponent
(�), has been shown to be useful in distinguishing between
gravity models [17]. Our results for � are presented in
Fig. 8. It shows that using DES lensing data we expect to
constrain � to 
ð�Þ ¼ 0:19, while Stage-IV survey lensing
data achieve 
ð�Þ ¼ 0:07. When information about the
redshift-space power spectrum PgvðkÞ is included the im-

provement is about a factor of 2 for DES combined with
BOSS-I, and less than that for Stage-IV surveys. Thus
combining imaging and spectroscopic surveys is less use-
ful for constraining � than the parametrization used in the

FIG. 7 (color online). Correlation between modified gravity parameters for the DES and BOSS-I surveys (left panel), and for Stage-
IV surveys (right panel). The error contours are as in Fig. 5.

FIG. 8 (color online). Achievable errors in the growth parameter � around a fiducial value � ¼ 0:55. There are shown 68%
confidence level contours for survey configurations as described in Figs. 5 and 6. There are shown 68% confidence level contours as
expected from the DES and Stage-IV imaging surveys (gray) and when combined with spectroscopic surveys (blue). The contour
(orange) shows predictions when the nonlinear matter power spectrum is accounted for. The braneworld DGP model has � ¼ 0:68.
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rest of the paper (compare Fig. 7 with Figs. 5 and 6). This is
not surprising, as any measure of the growth of structure
constrains this one-parameter modification. While it may
indeed capture the relevant physics in some MGmodels, in
general robust constraints require tests of both the Poisson
equation and the ratio of metric potentials. These require
both lensing and dynamical information, as illustrated in
Figs. 5 and 6.

The two models that have been extensively worked out
in the literature are fðRÞ and DGP models; for these the
ratio of potentials departs from unity by tens of percent in
the quasistatic, Newtonian regime relevant to large-scale
structure. The gravitational constant however is close to its
value in GR if it is defined using the sum of metric
potentials in the Poisson equation (rather than the usual
definition, used in this paper as well, with the curvature
potential) [27]. Thus �0 is the more sensitive parameter for
testing MG if current models are used as a guide.

IV. CONCLUSIONS

We have used a Fisher matrix approach to test modified
gravity models using imaging and spectroscopic galaxy
surveys. The expansion history Universe is not likely to
be sufficient to test MG models as it could be mimicked by
an appropriately evolving dark energy equation of state.
Here, we use observable consequences of the evolution of
perturbations to test gravity. In particular we use weak
gravitational lensing measured from multicolor imaging
surveys and dynamical information from spectroscopic
surveys of galaxies. Lensing is sensitive to both metric
potentials, whereas dynamical effects are driven by the
Newtonian potential. Combining these probes provides
robust tests of gravity, which is valuable given that we
currently have a very limited number of specific models
that are at all plausible.

We use three simple parametrization of MG models and
perform a joint analysis of shear-shear, galaxy-shear, and
galaxy-velocity power spectra. With a two-parameter de-
scription of modified gravity, we find that combining the
three observables is essential to obtain strong constraints
on gravity. We give predictions for Stage-III and Stage-IV
surveys. We also compare the two-parameter description to
the commonly used single parameter description (via the �
parameter), and to a scale-dependent description used for
braneworld models.

Our results highlight the need for imaging and spectro-
scopic surveys to probe the same redshift range (for the
lensing mass and galaxy distribution, respectively).
Planned imaging surveys that reach redshifts of unity and
beyond, and spectroscopic surveys that measure galaxy
clustering at z� 0:2–0:6 are already well suited for prob-
ing modified gravity. With a careful selection of galaxy
samples to compare cross-spectra, such surveys will allow
us to perform robust tests of gravity. The question of how to
use small-scale information requires significant work, as

different modified gravity models show a variety of non-
linear effects on scales below �10 Mpc. It may be that
models will need to be tested individually on these scales.
Even so, measurements of the two parameters we have
used would provide a consistency test of the GR plus a
smooth dark energy scenario over a wide range of scales.
We have focused on the most common MG parametri-

zation with the gravitational constant and the ratio of the
metric potentials being free parameters. These parameters
turn out to be strongly correlated with each other and with
the evolving, scale-independent bias for the observables
we have used. With external information on bias, or by
including galaxy-galaxy spectra, this degeneracy could be
broken (though the bias parametrization would need to be
more complex as well with the inclusion of scale depen-
dence). Alternatively, a different, physically-motivated pa-
rametrization may be better able to capture the dependence
of observables on MG, such as the one discussed in the
Appendix B [25,55]. The general properties of a useful MG
parametrization, one that is able to get the most informa-
tion out of a given set of observables, have been studied by
[56].
Finally, in our analysis when we have included nonlinear

evolution we have simply assumed it follows the predic-
tions for GR. This provides one scenario for MG con-
straints; it may be optimistic as the degeneracy between
MG parameters and scale-independent galaxy bias gets
lifted in this case. The existence of scale-dependent bias
on scales where nonlinear effects are important would lead
to weaker constraints. On the other hand, specific signa-
tures of nonlinearity would make it easier to distinguish
models. Clearly more work is needed to include small scale
information, realistic biasing schemes and additional ob-
servables such as galaxy power spectra, CMB lensing and
the ISW effect.

ACKNOWLEDGMENTS

We are grateful to G. Bernstein, A. Borisov, M. Jarvis,
M. Lima, Z. Ma, and P. Zhang for many useful discussions.
We especially thank R. Scoccimarro for discussions and
help with the covariance calculations. This work is sup-
ported in part by NSF Grant No. AST-0607667. M. T. is
supported by World Premier International Research Center
Initiative (WPI Initiative), MEXT, Japan, by Grand-in-Aid
for Scientific Research on Priority Area No. 467 ‘‘Probing
Dark Energy through an Extremely Wide and Deep Survey
with Subaru Telescope’’ and on young researchers (Grant
Nos. 17740129 and 20740119).

APPENDIX A: COVARIANCEMATRICES FORTHE
REDSHIFT-SPACE POWER SPECTRA

We consider distribution of mass tracers (galaxies) in the

redshift space �ðsÞ
g and its power spectrum PðsÞ

gg, which is
defined as [37]
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h�ðsÞ
g ðkÞ�ðsÞ

g ð�k0Þi ¼ ð2�Þ3PðsÞ
ggðkÞ�Dðk� k0Þ; (A1)

where �DðkÞ is the Dirac’s delta function. In the discrete
case (A1) becomes

h�ðsÞ
g ðkiÞ�ðsÞ

g ð�kjÞi ¼ ð2�Þ3
VF

PðsÞ
ggðkiÞ�ij; (A2)

where discrete Fourier modes �ðsÞ
g ðkiÞ have units of vol-

ume. We are interested in computing bias and covariance
matrices for the galaxy-galaxy band-power spectrum
PggðkiÞ, galaxy-velocity PgvðkiÞ and velocity-velocity

PvvðkiÞ. First, let us define estimators of these power
spectra

P̂ XYðkiÞ ¼ 1

Nk

X
k;�

WXYð�ÞP̂ðsÞ
ggðk;�Þ; (A3)

where X and Y stand for galaxy (g) or velocity (v) fields.
The weight functions WXXð�Þ are given by

Wggð�Þ ¼ P0ð�Þ � 5
2P2ð�Þ þ 27

8P4ð�Þ; (A4)

Wgvð�Þ ¼ 15
4P2ð�Þ � 135

8 P4ð�Þ; (A5)

Wvvð�Þ ¼ 315
8 P4ð�Þ; (A6)

where Plð�Þ is the l-th order Legendre polynomial as a
function of the azimuthal angle between a wave vector k
and a line of sight (�k � kk=k). The expression (A6)

agrees with the one found by [57]. By ensemble averaging
of (A3) one can show that weight functions (A4)–(A6)
together with (A3) provide unbiased estimators for
PggðkiÞ, PgvðkiÞ and PvvðkiÞ. In the continuous limit, if

the fundamental volume VF ¼ ð2�Þ3=Vs is small com-
pared to the total volume of the Fourier-space spherical
shell Vk where averaging is carried on, we obtain

hP̂XYðkiÞi ¼ 1

Nk

1

VF

Z
dk2�k2

Z 1

�1
d�WXYð�Þ½PggðkiÞ

þ 2�2PgvðkiÞ þ�4PvvðkiÞ�: (A7)

Next, we use orthogonality relation for Legendre polyno-
mials and after integration obtain

hP̂XYðkiÞi ¼ 1

Nk

Vk

VF

PXYðkiÞ ¼ PXYðkiÞ: (A8)

Therefore, estimators (A3) of power spectra Pgg, Pgv and

Pvv are unbiased.
Now let us turn to computing covariance matrices for the

introduced estimators. The formulation is general for all
three band-power spectra we are interested in. The differ-
ence is in the weight functions. From the definition of the
covariance matrix we have

Cov ½P̂XYðkiÞ; P̂XYðkjÞ� ¼ hP̂XYðkiÞP̂XYðkjÞi
� PXYðkiÞPXYðkjÞ: (A9)

We plug Eq. (A3) in Eq. (A9) and obtain

Cov ½P̂XYðkiÞ; P̂XYðkjÞ� þ PXYðkiÞPXYðkjÞ

¼ 1

N2
k

X
k;�

X
k0;�0

WXYð�ÞWXYð�0ÞhP̂ðsÞ
ggðk;�ÞP̂ðsÞ

ggðk0; �0Þ; i

(A10)

where averaging is over all modes is spherical shells of
radii k and k0 in the Fourier space. We can express the
estimator of the redshift-space power spectrum by means
of (A2), which leads to

Cov ½P̂XYðkiÞ; P̂XYðkjÞ� þ PXYðkiÞPXYðkjÞ

¼ 1

N2
k

V2
F

ð2�Þ6
X
k;�

X
k0;�0

WXYð�ÞWXYð�0Þ

� h�ðsÞ
g ðkÞ�ðsÞ

g ð�kÞ�ðsÞ
g ðk0Þ�ðsÞ

g ð�k0Þi: (A11)

Note that k denotes discrete Fourier modes contained in a
spherical-shell region of the Fourier space for a given band
power ki: ki ��ki=2 � jkj � ki þ�ki=2. We assume

that the �ðsÞ
g ðkÞ is the Gaussian random field which allows

to simplify (A11) considerably by applying the Wick’s
theorem (see e.g. [37]. We obtain

Cov½P̂XYðkiÞ; P̂XYðkjÞ� þPXYðkiÞPXYðkjÞ

¼ 1

N2
k

V2
F

ð2�Þ6
X
k;�

X
k0;�0

WXYð�ÞWXYð�0Þ½h�ðsÞ
g ðkÞ�ðsÞ

g ð�kÞi

� h�ðsÞ
g ðk0Þ�ðsÞ

g ð�k0Þi þ h�ðsÞ
g ðkÞ�ðsÞ

g ðk0Þi
� h�ðsÞ

g ð�kÞ�ðsÞ
g ð�k0Þi þ h�ðsÞ

g ðkÞ�ðsÞ
g ð�k0Þi

� h�ðsÞ
g ð�kÞ�ðsÞ

g ðk0Þi�: (A12)

By applying relation (A2) we obtain

Cov ½P̂XYðkiÞ; P̂XYðkjÞ� þ PXYðkiÞPXYðkjÞ

¼ 1

N2
k

X
k;�

WXYð�ÞPðsÞ
ggðk;�ÞX

k0;�0
WXYð�0ÞPðsÞ

ggðk0; �0Þ

þ 1

N2
k

X
k;�

X
k0;�0

WXYð�ÞWXYð�0Þ½PðsÞ
ggðk;�Þ�2�k;k0��;��0

þ 1

N2
k

X
k;�

X
k0;�0

WXYð�ÞWXYð�0Þ½PðsÞ
ggðk;�Þ�2�k;k0��;�0 :

(A13)

In the second and third terms we introduced Kronecker
delta-type symbol �p;q, which means that only pairs of

modes which wave vectors are opposite contribute to the
second term and only these which wave vectors are equal
contribute to the third term. These delta functions make
one summation in the second and third terms drop out.
Moreover, all functions are even with respect to�. Next, in
the limit of continuous � we derive
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Cov½P̂XYðkiÞ; P̂XYðkjÞ� ¼ 2

VF

1

N2
k

�ij

X
k

2�k2�k

�
Z 1

�1
d�W2

XYð�Þ½PðsÞ
ggðk;�Þ�2:

(A14)

Finally, we obtain a general expression for the covariance
of the PggðkiÞ, PgvðkiÞ or PvvðkiÞ provided validity of the

decomposition (13)

Cov½P̂XYðkiÞ; P̂XYðkjÞ� ¼ 2ð2�Þ3
2�k2i�kiVs

�ij

Z 1

�1

d�

4

�W2
XYð�ÞPðsÞ

ggðk;�Þ: (A15)

By means of the relation (A15) it is straightforward to

obtain desired expressions for the P̂ggðkiÞ, P̂gvðkiÞ and

P̂vvðkiÞ band-power-spectra covariance matrices, which
are presented below. Notice that we included the effect of
discrete sampling of the mass tracer distribution by includ-
ing the shot noise term 1= �ng.

Cov½P̂ggðkiÞ; P̂ggðkjÞ� ¼ 2ð2�Þ3
2�k2i�kiVs

�ij

75

128 128

�
3003

�
PggðkiÞ þ 1

�ng

�
2 þ 1092

�
PggðkiÞ þ 1

�ng

�
PgvðkiÞ þ 1652

3
P2
gvðkiÞ

þ 2

15
PvvðkiÞ

�
2065

�
PggðkiÞ þ 1

�ng

�
þ 3126PgvðkiÞ

�
þ 1491

17
P2
vvðkiÞ

�
; (A16)

Cov½P̂gvðkiÞ; P̂gvðkjÞ� ¼ 2ð2�Þ3
2�k2i�kiVs

�ij

105

18 304

�
3003

�
PggðkiÞ þ 1

�ng

�
2 þ 4420

�
PggðkiÞ þ 1

�ng

�
PgvðkiÞ þ 2940P2

gvðkiÞ

þ 10PvvðkiÞ
�
147

�
PggðkiÞ þ 1

�ng

�
þ 226PgvðkiÞ

�
þ 24 185

51
P2
vvðkiÞ

�
; (A17)

Cov ½P̂vvðkiÞ; P̂vvðkjÞ� ¼ 2ð2�Þ3
2�k2i�kiVs

�ij

44 100

1 537 536

�
3003

�
PggðkiÞ þ 1

�ng

�
2 þ 1092

�
PggðkiÞ þ 1

�ng

�
PgvðkiÞ

þ 23 148

5
P2
gvðkiÞ þ 2

5
PvvðkiÞ

�
5787

�
PggðkiÞ þ 1

�ng

�
þ 9810PgvðkiÞ

�
þ 14 931

17
P2
vvðkiÞ

�
:

(A18)

APPENDIX B: ALTERNATIVE
PARAMETRIZATION OF MODIFIED GRAVITY

A useful modification to GR was proposed by [55],
which seeks to describe changes in the potential-density
relationship on large scales while leaving small scales
unchanged from GR. The modification is expressed in
the form of a power series in aH=k, which is the ratio of
the proper scale of perturbations a=k to the horizon size
1=H. The Fourier-space analogue of the Poisson equation
is assumed to be modified as follows:

� k2�ða;kÞ ¼ 4�a2GgðkÞ ���ða;kÞ; (B1)

where gðkÞ � g0ðaÞ þ g1ðaÞ aHk . The relation (B1) con-

verges to GR when g0 ¼ 1 and for scales much smaller
than the horizon size, i.e. aH=k � 1. Note that we con-
sider only the first two elements of the power series. The
linear term in the expansion (B1) is characteristic for
braneworld inspired models like DGP. The linear term is
absent in scalar-tensor models including fðRÞ models,
where the first nonzero higher order term is quadratic in
aH=k. For a thorough discussion of the parametrization
and specific examples in different alternative gravity mod-
els see [55].

Similar to the curvature potential �, the Newtonian
potential can be modified as [55]

� k2�ða;kÞ ¼ 4�a2G�ðkÞ ���ða;kÞ; (B2)

where�ðkÞ � �0ðaÞ þ�1ðaÞ aHk . In GR g0 ¼ �0 ¼ 1 and

the scale dependence of both potentials vanishes. Thus, we
parametrize the departure from GR using 4 parameters g0,
g1, �0 and �1. They are used in the Fisher matrix analysis
with fiducial values are g0 ¼ �0 ¼ 1 and g1 ¼ �1 ¼ 0.
This type of modification is supported by the fact that the
growth of structures is sourced by the Newtonian potential
�, so that �0 and �1 contain information about the effect
of MG on the observed matter distribution. The growth
equation takes the form [29]

€�ða; kÞ þ 2HðaÞ _�ða; kÞ þ�ðkÞ k
2

a2
�ða; kÞ ¼ 0: (B3)

The results for MG parameters with Stage-IV and
BOSS-II surveys are shown in Fig. 9. The imaging Stage-
IV survey (with the usual CMB prior) could constrain the
scale-independent part of the effective gravitational con-
stants as 
ðg0Þ ¼ 0:22 and 
ð�0Þ ¼ 0:075 (about a factor
of 4 smaller than those achievable with DES.) If we add
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information from BOSS-II spectroscopic survey we obtain

ðg0Þ ¼ 0:050 and 
ð�0Þ ¼ 0:018 (about 2.5 times
smaller than for DES and BOSS-I.)

In Fig. 10 we present joint constraints on the scale-
independent and dependent terms in the modification.
The uncertainties on the scale-dependent terms are much
larger (compared to the constant terms): 
ðg1Þ ¼ 3:52 and

ð�1Þ ¼ 1:39. The weak constraints on the scale-
dependent terms relates to the fact that this dependence
is important on large scales approaching the horizon,
where the signal-to-noise is small. The integrated Sachs-
Wolfe effect would be more promising to test for modifi-
cations on the largest scales.

On the other hand, even constraining the scale-
independent modification lets us distinguish a class of
braneworld models like DGP gravity from the standard

Lambda-dominated CDM one. The values of parameters
under examination for the DGP model are g0 ¼ 1:25, g1 ¼
0:5, �0 ¼ 0:75 �1 ¼ 0:5 at z� 0:2 (and closer to GR
values for higher redshifts [55]). Thus, the DGP model is
several 
 away from the GR (see [58] for current con-
straints on DGP). The differences in the growth history in
these two gravity models helps discriminate them (�0 is
the most tightly constrained parameter).
We have also explored time evolving parametrization of

g and �. With additional parameters, constraints generally
get weaker, but if one chooses a specific fiducial time
evolution (such as linear or quadratic in a) it can become
easier to test MG models. We leave a detailed exploration
of time and scale dependence for future work. See [56] for
a recent study using principal components in the scale and
time dependence.

FIG. 9 (color online). Achievable uncertainty on modified gravity parameters g0, �0 and matter density �m for the future
configuration of the Stage-IV imaging survey and the BOSS-II galaxy redshift survey. Predictions for the Stage-IV survey only are
shown in gray, for the Stage-IVand BOSS-II combined—in blue. There are shown 68% confidence level contours. The dependence on
the other parameters is marginalized out.

FIG. 10 (color online). Uncertainty in modified gravity parameters g1, �1 which describe scale dependence of the growth of
structure. There are shown 68% confidence level contours for the Stage-IV alone and combined with BOSS-II. Note a lack of
constrains on the scale dependence of the modified gravity models for the assumed parametrization.
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