3,057 research outputs found
The reflection and transmission properties of a triple band dichroic surface
The development of a triple-band dichroic surface design is detailed that is reflective in the Ka-band from 22.5 to 27.3 GHz and the Ku-band from 13.7 to 15.1 GHz, yet transparent in the S-band from 2.0 to 2.3 GHz, for all planes of incidence, and for all angles of incidence out to eta = 45 deg. The design is comprised of two gangbuster whole-surfaces separated by a distance, d, that is comparable to a fraction of a wavelength in S-band, and enhanced by the addition of a dielectric matching plate. The gangbuster array is comprised of tightly packed straight skewed dipole elements referred to as half-surfaces. Two of these half-surfaces are oriented orthogonal to each other and placed an array separation distance, s, apart to form the gangbuster whole-surface which allows any arbitrary plane of incidence. Results are given for the triple-band design with and without dielectric and conduction losses. The cross polarization properties of the dichroic surface was further investigated. It is shown that the reflection cross polarized component is dominated by the geometry of the front whole surface of the design (particularly the array separation s) and is never more than -22.5 dB in the frequency band 0 to 30 GHz. The transmission cross polarization component is dependent on both whole-surfaces and is never more than -30 dB in the same frequency band
Optical bistability involving planar metamaterial with broken structural symmetry
We report on a bistable light transmission through a planar metamaterial
composed of a metal pattern of weakly asymmetric elements placed on a nonlinear
substrate. Such structure bears the Fano-like sharp resonance response of a
trapped-mode excitation. The feedback required for bistability is provided by
the coupling between the strong antiphased trapped-mode-resonance currents
excited on the metal elements and the intensity of inner field in the nonlinear
substrate.Comment: 4 pages, 4 figure
Ptychographic X-ray computed tomography of extended colloidal networks in food emulsions
As a main structural level in colloidal food materials, extended colloidal
networks are important for texture and rheology. By obtaining the 3D
microstructure of the network, macroscopic mechanical properties of the
material can be inferred. However, this approach is hampered by the lack of
suitable non-destructive 3D imaging techniques with submicron resolution.
We present results of quantitative ptychographic X-ray computed tomography
applied to a palm kernel oil based oil-in-water emulsion. The measurements were
carried out at ambient pressure and temperature. The 3D structure of the
extended colloidal network of fat globules was obtained with a resolution of
around 300 nm. Through image analysis of the network structure, the fat globule
size distribution was computed and compared to previous findings. In further
support, the reconstructed electron density values were within 4% of reference
values.Comment: 19 pages, 4 figures, to be published in Food Structur
Therapeutic Massage Combined with Mirror Therapy for Phantom Limb Pain: Two Experimental Cases
poster abstractPhantom limb pain (PLP) is a common and difficult to treat issue for individuals with amputations. Current PLP treatments (primarily pharmaceutical) are only modestly effective and often have negative side-effects. Massage has been self-reported as beneficial for PLP but no research has examined massage specifically for PLP. Mirror therapy’s evidence base for PLP is building. Combining massage (which alone may impact PLP via Pfleger’s law of symmetry) with mirror therapy may allow practitioners to apply massage for a painful area that cannot actually be touched.
The current quasi-experimental A-B-A withdrawal case series sought to descriptively examine outcomes of therapeutic massage combined with mirror therapy (TMwMT) for individuals with persistent lower limb PLP and establish feasibility of intervention delivery.
Each study phase was four weeks long with bi-weekly, individualized 20-25 minute TMwMT sessions during the treatment (B) phase. TMwMT sessions were developed and applied to address the specific participant PLP experience as if the pain were experienced by the intact limb. During masked TMwMT sessions, participants viewed a real-time mirror image of their intact leg receiving massage in the place of their missing limb. Measures: bi-weekly PLP severity via VAS; PLP intensity and interference collected at beginning/end of each phase via Brief Pain Inventory.
Two men completed the study protocol. PLP severity decreased during treatment for both participants with effects beginning to diminish by week two of the withdrawal phase. By the study’s conclusion, PLP severity had not elevated back to average levels of initial phase A. Pain intensity for both participants improved during phase B but results were mixed for pain interference.
These individuals had not responded to previous treatments for their PLP; our experimental, non-pharmacological and targeted TMwMT treatment was beneficial in the short-term. Our intervention is theoretically sound, reflects aspects of real-world massage delivery, and needs further investigation
Analyzing Short-Term Noise Dependencies of Spike-Counts in Macaque Prefrontal Cortex Using Copulas and the Flashlight Transformation
Simultaneous spike-counts of neural populations are typically modeled by a Gaussian distribution. On short time scales, however, this distribution is too restrictive to describe and analyze multivariate distributions of discrete spike-counts. We present an alternative that is based on copulas and can account for arbitrary marginal distributions, including Poisson and negative binomial distributions as well as second and higher-order interactions. We describe maximum likelihood-based procedures for fitting copula-based models to spike-count data, and we derive a so-called flashlight transformation which makes it possible to move the tail dependence of an arbitrary copula into an arbitrary orthant of the multivariate probability distribution. Mixtures of copulas that combine different dependence structures and thereby model different driving processes simultaneously are also introduced. First, we apply copula-based models to populations of integrate-and-fire neurons receiving partially correlated input and show that the best fitting copulas provide information about the functional connectivity of coupled neurons which can be extracted using the flashlight transformation. We then apply the new method to data which were recorded from macaque prefrontal cortex using a multi-tetrode array. We find that copula-based distributions with negative binomial marginals provide an appropriate stochastic model for the multivariate spike-count distributions rather than the multivariate Poisson latent variables distribution and the often used multivariate normal distribution. The dependence structure of these distributions provides evidence for common inhibitory input to all recorded stimulus encoding neurons. Finally, we show that copula-based models can be successfully used to evaluate neural codes, e. g., to characterize stimulus-dependent spike-count distributions with information measures. This demonstrates that copula-based models are not only a versatile class of models for multivariate distributions of spike-counts, but that those models can be exploited to understand functional dependencies
The Air Forces on a Model of the Sperry Messenger Airplane Without Propeller
This is a report on a scale effect research which was made in the variable-density wind tunnel of the National Advisory Committee for Aeronautics at the request of the Army Air Service. A 1/10 scale model of the sperry messenger airplane with USA-5 wings was tested without a propeller at various Reynolds numbers up to the full scale value. Two series of tests were: the first on the original model which was of the usual simplified construction, and the second on a modified model embodying a great amount of detail. The experimental results show that the scale effect is almost entirely confined to the drag. It was also found that the model should be geometrically similar to the full-scale airplane if the test data are to be directly applicable to full scale
Kolmogorov Similarity Hypotheses for Scalar Fields: Sampling Intermittent Turbulent Mixing in the Ocean and Galaxy
Kolmogorov's three universal similarity hypotheses are extrapolated to
describe scalar fields like temperature mixed by turbulence. By the analogous
Kolmogorov third hypothesis for scalars, temperature dissipation rates chi
averaged over lengths r > L_K should be lognormally distributed with
intermittency factors I that increase with increasing turbulence energy length
scales L_O as I_chi-r = m_T ln(L_O/r). Tests of Kolmogorovian velocity and
scalar universal similarity hypotheses for very large ranges of turbulence
length and time scales are provided by data from the ocean and the Galactic
interstellar medium. The universal constant for turbulent mixing intermittency
m_T is estimated from oceanic data to be 0.44+-0.01, which is remarkably close
to estimates for Kolmogorov's turbulence intermittency constant m_u of
0.45+-0.05 from Galactic as well as atmospheric data. Extreme intermittency
complicates the oceanic sampling problem, and may lead to quantitative and
qualitative undersampling errors in estimates of mean oceanic dissipation rates
and fluxes. Intermittency of turbulence and mixing in the interstellar medium
may be a factor in the formation of stars.Comment: 23 pages original of Proc. Roy. Soc. article, 8 figures; in
"Turbulence and Stochastic Processes: Kolmogorov's ideas 50 years on", London
The Royal Society, 1991, J.C.R. Hunt, O.M. Phillips, D. Williams Eds., pages
1-240, vol. 434 (no. 1890) Proc. Roy. Soc. Lond. A, PDF fil
On reconciling ground-based with spaceborne normalized radar cross section measurements
©2002 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.This study examines differences in the normalized radar cross section, derived from ground-based versus spaceborne radar data. A simple homogeneous half-space model, indicates that agreement between the two improves as 1) the distance from the scatterer is increased; and/or 2) the extinction coefficient increases
- …