56 research outputs found

    Statistical Analysis of Readthrough Levels for Nonsense Mutations in Mammalian Cells Reveals a Major Determinant of Response to Gentamicin

    Get PDF
    The efficiency of translation termination depends on the nature of the stop codon and the surrounding nucleotides. Some molecules, such as aminoglycoside antibiotics (gentamicin), decrease termination efficiency and are currently being evaluated for diseases caused by premature termination codons. However, the readthrough response to treatment is highly variable and little is known about the rules governing readthrough level and response to aminoglycosides. In this study, we carried out in-depth statistical analysis on a very large set of nonsense mutations to decipher the elements of nucleotide context responsible for modulating readthrough levels and gentamicin response. We quantified readthrough for 66 sequences containing a stop codon, in the presence and absence of gentamicin, in cultured mammalian cells. We demonstrated that the efficiency of readthrough after treatment is determined by the complex interplay between the stop codon and a larger sequence context. There was a strong positive correlation between basal and induced readthrough levels, and a weak negative correlation between basal readthrough level and gentamicin response (i.e. the factor of increase from basal to induced readthrough levels). The identity of the stop codon did not affect the response to gentamicin treatment. In agreement with a previous report, we confirm that the presence of a cytosine in +4 position promotes higher basal and gentamicin-induced readthrough than other nucleotides. We highlight for the first time that the presence of a uracil residue immediately upstream from the stop codon is a major determinant of the response to gentamicin. Moreover, this effect was mediated by the nucleotide itself, rather than by the amino-acid or tRNA corresponding to the −1 codon. Finally, we point out that a uracil at this position associated with a cytosine at +4 results in an optimal gentamicin-induced readthrough, which is the therapeutically relevant variable

    Human neuropeptide Y signal peptide gain-of-function polymorphism is associated with increased body mass index: possible mode of function

    Get PDF
    Neuropeptide Y (NPY) has been implicated in the control of food intake and energy balance based on many observations in animals. We have studied single nucleotide polymorphisms (SNPs) within the regulatory and coding sequences of the human NPY gene. One variant (1128 T>C), which causes an amino acid change from leucine to proline at codon 7 in the signal peptide of NPY, was associated with increased body mass index (BMI) in two separate Swedish populations of normal and overweight individuals. In vitro transcription and translation studies indicated the unlikelihood that this signal peptide variation affects the site of cleavage and targeting or uptake of NPY into the endoplasmic reticulum (ER). However, the mutant, and to a lesser extent the wild-type, signal peptide by themselves markedly potentiated NPY-induced food intake, as well as hypothalamic NPY receptor signaling. Our findings in humans strongly indicate that the NPY signaling system is implicated in body weight regulation and suggest a new and unexpected functional role of a signal peptide

    Study of the impact of perilipin polymorphisms in a French population

    Get PDF
    BACKGROUND: Perilipins are proteins localized at the surface of the lipid droplet in adipocytes, steroid-producing cells and ruptured atherosclerotic plaques playing a role in the regulation of triglyceride deposition and mobilization. We investigated whether perilipin gene polymorphisms were associated with obesity, type 2 diabetes, and their related variables (anthropometric variables, plasma leptin, lipids, glucose and insulin concentrations) in a cross-sectional random sample of 1120 French men and women aged 35 to 65 years old, including 227 obese (BMI ≥ 30 kg/m(2)) and 275 type 2 diabetes subjects. RESULTS: Among 7 perilipin polymorphisms tested, only 2 (rs4578621 and rs894160) of them were frequent enough to be fully investigated and we genotyped the sample using the PCR-RFLP method. No significant associations could be found between any of these polymorphisms and the studied phenotypes. CONCLUSION: The rs4578621 and rs894160 polymorphisms of the perilipin gene are not major genetic determinants of obesity and type 2 diabetes-related phenotypes in a random sample of French men and women

    Two groups of phenylalanine biosynthetic operon leader peptides genes: a high level of apparently incidental frameshifting in decoding Escherichia coli pheL

    Get PDF
    The bacterial pheL gene encodes the leader peptide for the phenylalanine biosynthetic operon. Translation of pheL mRNA controls transcription attenuation and, consequently, expression of the downstream pheA gene. Fifty-three unique pheL genes have been identified in sequenced genomes of the gamma subdivision. There are two groups of pheL genes, both of which are short and contain a run(s) of phenylalanine codons at an internal position. One group is somewhat diverse and features different termination and 5′-flanking codons. The other group, mostly restricted to Enterobacteria and including Escherichia coli pheL, has a conserved nucleotide sequence that ends with UUC_CCC_UGA. When these three codons in E. coli pheL mRNA are in the ribosomal E-, P- and A-sites, there is an unusually high level, 15%, of +1 ribosomal frameshifting due to features of the nascent peptide sequence that include the penultimate phenylalanine. This level increases to 60% with a natural, heterologous, nascent peptide stimulator. Nevertheless, studies with different tRNAPro mutants in Salmonella enterica suggest that frameshifting at the end of pheL does not influence expression of the downstream pheA. This finding of incidental, rather than utilized, frameshifting is cautionary for other studies of programmed frameshifting

    Probing the Functional Impact of Sequence Variation on p53-DNA Interactions Using a Novel Microsphere Assay for Protein-DNA Binding with Human Cell Extracts

    Get PDF
    The p53 tumor suppressor regulates its target genes through sequence-specific binding to DNA response elements (REs). Although numerous p53 REs are established, the thousands more identified by bioinformatics are not easily subjected to comparative functional evaluation. To examine the relationship between RE sequence variation—including polymorphisms—and p53 binding, we have developed a multiplex format microsphere assay of protein-DNA binding (MAPD) for p53 in nuclear extracts. Using MAPD we measured sequence-specific p53 binding of doxorubicin-activated or transiently expressed p53 to REs from established p53 target genes and p53 consensus REs. To assess the sensitivity and scalability of the assay, we tested 16 variants of the p21 target sequence and a 62-multiplex set of single nucleotide (nt) variants of the p53 consensus sequence and found many changes in p53 binding that are not captured by current computational binding models. A group of eight single nucleotide polymorphisms (SNPs) was examined and binding profiles closely matched transactivation capability tested in luciferase constructs. The in vitro binding characteristics of p53 in nuclear extracts recapitulated the cellular in vivo transactivation capabilities for eight well-established human REs measured by luciferase assay. Using a set of 26 bona fide REs, we observed distinct binding patterns characteristic of transiently expressed wild type and mutant p53s. This microsphere assay system utilizes biologically meaningful cell extracts in a multiplexed, quantitative, in vitro format that provides a powerful experimental tool for elucidating the functional impact of sequence polymorphism and protein variation on protein/DNA binding in transcriptional networks

    The PLIN4 Variant rs8887 Modulates Obesity Related Phenotypes in Humans through Creation of a Novel miR-522 Seed Site

    Get PDF
    PLIN4 is a member of the PAT family of lipid storage droplet (LSD) proteins. Associations between seven single nucleotide polymorphisms (SNPs) at human PLIN4 with obesity related phenotypes were investigated using meta-analysis followed by a determination if these phenotypes are modulated by interactions between PLIN4 SNPs and dietary PUFA. Samples consisted of subjects from two populations of European ancestry. We demonstrated association of rs8887 with anthropometrics. Meta-analysis demonstrated significant interactions between the rs8887 minor allele with PUFA n3 modulating anthropometrics. rs884164 showed interaction with both n3 and n6 PUFA modulating anthropometric and lipid phenotypes. In silico analysis of the PLIN4 3′UTR sequence surrounding the rs8887 minor A allele predicted a seed site for the human microRNA-522 (miR-522), suggesting a functional mechanism. Our data showed that a PLIN4 3′UTR luciferase reporter carrying the A allele of rs8887 was reduced in response to miR-522 mimics compared to the G allele. These results suggest variation at the PLIN4 locus, and its interaction with PUFA as a modulator of obesity related phenotypes, acts in part through creation of a miR-522 regulatory site

    Quantitative analysis of in vivo ribosomal events at UGA and UAG stop codons

    No full text
    corecore