62 research outputs found

    Enhanced mitochondrial superoxide scavenging does not Improve muscle insulin action in the high fat-fed mouse

    Get PDF
    Improving mitochondrial oxidant scavenging may be a viable strategy for the treatment of insulin resistance and diabetes. Mice overexpressing the mitochondrial matrix isoform of superoxide dismutase (sod2(tg) mice) and/or transgenically expressing catalase within the mitochondrial matrix (mcat(tg) mice) have increased scavenging of O2(Ë™-) and H2O2, respectively. Furthermore, muscle insulin action is partially preserved in high fat (HF)-fed mcat(tg) mice. The goal of the current study was to test the hypothesis that increased O2(Ë™-) scavenging alone or in combination with increased H2O2 scavenging (mtAO mice) enhances in vivo muscle insulin action in the HF-fed mouse. Insulin action was examined in conscious, unrestrained and unstressed wild type (WT), sod2(tg), mcat(tg) and mtAO mice using hyperinsulinemic-euglycemic clamps (insulin clamps) combined with radioactive glucose tracers following sixteen weeks of normal chow or HF (60% calories from fat) feeding. Glucose infusion rates, whole body glucose disappearance, and muscle glucose uptake during the insulin clamp were similar in chow- and HF-fed WT and sod2(tg) mice. Consistent with our previous work, HF-fed mcat(tg) mice had improved muscle insulin action, however, an additive effect was not seen in mtAO mice. Insulin-stimulated Akt phosphorylation in muscle from clamped mice was consistent with glucose flux measurements. These results demonstrate that increased O2(Ë™-) scavenging does not improve muscle insulin action in the HF-fed mouse alone or when coupled to increased H2O2 scavenging

    Paradoxical roles of antioxidant enzymes:Basic mechanisms and health implications

    Get PDF
    Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from aerobic metabolism, as a result of accidental electron leakage as well as regulated enzymatic processes. Because ROS/RNS can induce oxidative injury and act in redox signaling, enzymes metabolizing them will inherently promote either health or disease, depending on the physiological context. It is thus misleading to consider conventionally called antioxidant enzymes to be largely, if not exclusively, health protective. Because such a notion is nonetheless common, we herein attempt to rationalize why this simplistic view should be avoided. First we give an updated summary of physiological phenotypes triggered in mouse models of overexpression or knockout of major antioxidant enzymes. Subsequently, we focus on a series of striking cases that demonstrate “paradoxical” outcomes, i.e., increased fitness upon deletion of antioxidant enzymes or disease triggered by their overexpression. We elaborate mechanisms by which these phenotypes are mediated via chemical, biological, and metabolic interactions of the antioxidant enzymes with their substrates, downstream events, and cellular context. Furthermore, we propose that novel treatments of antioxidant enzyme-related human diseases may be enabled by deliberate targeting of dual roles of the pertaining enzymes. We also discuss the potential of “antioxidant” nutrients and phytochemicals, via regulating the expression or function of antioxidant enzymes, in preventing, treating, or aggravating chronic diseases. We conclude that “paradoxical” roles of antioxidant enzymes in physiology, health, and disease derive from sophisticated molecular mechanisms of redox biology and metabolic homeostasis. Simply viewing antioxidant enzymes as always being beneficial is not only conceptually misleading but also clinically hazardous if such notions underpin medical treatment protocols based on modulation of redox pathways

    Mitochondrial dysfunction, a probable cause of persistent oxidative stress after exposure to ionizing radiation

    Get PDF
    Several recent studies have suggested that the reactive oxygen species (ROS) generated from mitochondria contribute to genomic instability after exposure of the cells to ionizing radiation, but the mechanism of this process is not yet fully understood. We examined the hypothesis that irradiation induces mitochondrial dysfunction to cause persistent oxidative stress, which contributes to genomic instability. After the exposure of cells to 5 Gy gamma-ray irradiation, we found that the irradiation induced the following changes in a clear pattern of time courses. First, a robust increase of intracellular ROS levels occurred within minutes, but the intracellular ROS disappeared within 30 min. Then the mitochondrial dysfunction was detected at 12 h after irradiation, as indicated by the decreased activity of NADH dehydrogenase (Complex I), the most important enzyme in regulating the release of ROS from the mitochondrial electron transport chain (ETC). Finally, a significant increase of ROS levels in the mitochondria and the oxidation of mitochondrial DNA were observed in cells at 24 h or later after irradiation. Although further experiments are required, results in this study support the hypothesis that mitochondrial dysfunction causes persistent oxidative stress that may contribute to promote radiation-induced genomic instability

    Activation of Wnt/β-catenin signalling pathway induces chemoresistance to interferon-α/5-fluorouracil combination therapy for hepatocellular carcinoma

    Get PDF
    Type I IFN receptor type 2 (IFNAR2) expression correlates significantly with clinical response to interferon (IFN)-α/5-fluorouracil (5-FU) combination therapy for hepatocellular carcinoma (HCC). However, some IFNAR2-positive patients show no response to the therapy. This result suggests the possibility of other factors, which would be responsible for resistance to IFN-α/5-FU therapy. The aim of this study was to examine the mechanism of anti-proliferative effects of IFN-α/5-FU therapy and search for a biological marker of chemoresistance to such therapy. Gene expression profiling and molecular network analysis were used in the analysis of non-responders and responders with IFNAR2-positive HCC. The Wnt/β-catenin signalling pathway contributed to resistance to IFN-α/5-FU therapy. Immunohistochemical analysis showed positive epithelial cell adhesion molecule (Ep-CAM) expression, the target molecule of Wnt/β-catenin signalling, only in non-responders. In vitro studies showed that activation of Wnt/β-catenin signalling by glycogen synthesis kinase-3 inhibitor (6-bromoindirubin-3′-oxime (BIO)) induced chemoresistance to IFN-α/5-FU. BrdU-based cell proliferation ELISA and cell cycle analysis showed that concurrent addition of BIO and IFN-α/5-FU significantly to hepatoma cell cultures reduced the inhibitory effects of the latter two on DNA synthesis and accumulation of cells in the S-phase. The results indicate that activation of Wnt/β-catenin signalling pathway induces chemoresistance to IFN-α/5-FU therapy and suggest that Ep-CAM is a potentially useful marker for resistance to such therapy, especially in IFNAR2-positive cases

    Integrative approach for differentially overexpressed genes in gastric cancer by combining large-scale gene expression profiling and network analysis

    Get PDF
    Gene expression profiling is a valuable tool for identifying differentially expressed genes in studies of disease subtype and patient outcome for various cancers. However, it remains difficult to assign biological significance to the vast number of genes. There is an increasing awareness of gene expression profile as an important part of the contextual molecular network at play in complex biological processes such as cancer initiation and progression. This study analysed the transcriptional profiles commonly activated at different stages of gastric cancers using an integrated approach combining gene expression profiling of 222 human tissues and gene regulatory dynamic mapping. We focused on an inferred core network with CDKN1A (p21WAF1/CIP1) as the hub, and extracted seven candidates for gastric carcinogenesis (MMP7, SPARC, SOD2, INHBA, IGFBP7, NEK6, LUM). They were classified into two groups based on the correlation between expression level and stage. The seven genes were commonly activated and their expression levels tended to increase as disease progressed. NEK6 and INHBA are particularly promising candidate genes overexpressed at the protein level, as confirmed by immunohistochemistry and western blotting. This integrated approach could help to identify candidate players in gastric carcinogenesis and progression. These genes are potential markers of gastric cancer regardless of stage
    • …
    corecore