41 research outputs found

    Characterisation and microleakage of a new hydrophilic fissure sealant – UltraSeal XT® hydro™

    Get PDF
    Objectives: The new hydrophilic fissure sealant, UltraSeal XT® hydro™ (Ultradent Products, USA), was characterised and its in vitro resistance to microleakage after placement on conventionally acid etched and sequentially lased and acid etched molars was investigated. Materials and Methods: The sealant was characterised by Fourier transform infra-red spectroscopy, (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and Vickers indentation test. Occlusal surfaces of extracted human molars were either conventionally acid etched (n = 10), or sequentially acid etched and laser irradiated (n = 10). UltraSeal XT® hydro™ was applied to both groups of teeth which were then subjected to 2500 thermocycles between 5 and 55 °C prior to microleakage assessment by fuchsin dye penetration. Results: UltraSeal XT® hydro™ is an acrylate-based sealant which achieved a degree of conversion of 50.6 ± 2.2% and a Vickers microhardness of 24.2 ± 1.5 under standard light curing (1000 mWcm-2 for 20 s). Fluoride ion release was negligible within a 14-day period. SEM and EDX analyses indicated that the sealant comprises irregular sub-micron and nano-sized silicon-, barium- and aluminium-bearing filler phases embedded within a ductile matrix. Laser preconditioning was found to significantly reduce microleakage (Mann-Whitney U test, p < 0.001). The lased teeth presented enhanced surface roughness on a 50 to 100 μm scale which caused the segregation and concentration of the filler particles at the enamel-sealant interface. Conclusion: Laser preconditioning significantly decreased microleakage and increased enamel surface roughness which caused zoning of the filler particles at the enamel-sealant interface

    A Translation Initiation Element Specific to mRNAs with Very Short 5′UTR that Also Regulates Transcription

    Get PDF
    Transcription is controlled by cis regulatory elements, which if localized downstream to the transcriptional start site (TSS), in the 5′UTR, could influence translation as well. However presently there is little evidence for such composite regulatory elements. We have identified by computational analysis an abundant element located downstream to the TSS up to position +30, which controls both transcription and translation. This element has an invariable ATG sequence, which serves as the translation initiation codon in 64% of the genes bearing it. In these genes the initiating AUG is preceded by an extremely short 5′UTR. We show that translation in vitro and in vivo is initiated exclusively from the AUG of this motif, and that the AUG flanking sequences create a strong translation initiation context. This motif is distinguished from the well-known Kozak in its unique ability to direct efficient and accurate translation initiation from mRNAs with a very short 5′UTR. We therefore named it TISU for Translation Initiator of Short 5′UTR. Interestingly, this translation initiation element is also an essential transcription regulatory element of Yin Yang 1. Our characterization of a common transcription and translation element points to a link between mammalian transcription and translation initiation

    Inferring Condition-Specific Modulation of Transcription Factor Activity in Yeast through Regulon-Based Analysis of Genomewide Expression

    Get PDF
    Background: A key goal of systems biology is to understand how genomewide mRNA expression levels are controlled by transcription factors (TFs) in a condition-specific fashion. TF activity is frequently modulated at the post-translational level through ligand binding, covalent modification, or changes in sub-cellular localization. In this paper, we demonstrate how prior information about regulatory network connectivity can be exploited to infer condition-specific TF activity as a hidden variable from the genomewide mRNA expression pattern in the yeast Saccharomyces cerevisiae. Methodology/Principal Findings: We first validate experimentally that by scoring differential expression at the level of gene sets or "regulons" comprised of the putative targets of a TF, we can accurately predict modulation of TF activity at the post-translational level. Next, we create an interactive database of inferred activities for a large number of TFs across a large number of experimental conditions in S. cerevisiae. This allows us to perform TF-centric analysis of the yeast regulatory network. Conclusions/Significance: We analyze the degree to which the mRNA expression level of each TF is predictive of its regulatory activity. We also organize TFs into "co-modulation networks" based on their inferred activity profile across conditions, and find that this reveals functional and mechanistic relationships. Finally, we present evidence that the PAC and rRPE motifs antagonize TBP-dependent regulation, and function as core promoter elements governed by the transcription regulator NC2. Regulon-based monitoring of TF activity modulation is a powerful tool for analyzing regulatory network function that should be applicable in other organisms. Tools and results are available online at http://bussemakerlab.org/RegulonProfiler/

    Tailor-Made Thermoplastic Elastomeric Stereoblock Polypropylenes by Modulation of Monomer Pressure

    No full text
    Tailor-Made Thermoplastic Elastomeric Stereoblock Polypropylenes by Modulation of Monomer Pressur
    corecore