148 research outputs found

    Testing the effectiveness of two natural selection simulations in the context of a large‑enrollment undergraduate laboratory class

    Get PDF
    Background: Simulations can be an active and engaging way for students to learn about natural selection, and many have been developed, including both physical and virtual simulations. In this study we assessed the student experience of, and learning from, two natural selection simulations, one physical and one virtual, in a large enrollment introductory biology lab course. We assigned students to treatments (the physical or virtual simulation activity) by section and assessed their understanding of natural selection using a multiple-choice pre-/post-test and short-answer responses on a post-lab assignment. We assessed student experience of the activities through structured observations and an affective survey. Results: Students in both treatments showed increased understanding of natural selection after completing the simulation activity, but there were no differences between treatments in learning gains on the pre-/post-test, or in the prevalence of concepts and misconceptions in written answers. On a survey of self-reported enjoyment they rated the physical activity significantly higher than the virtual activity. In classroom observations of student behavior, we found significant differences in the distribution of behaviors between treatments, including a higher frequency of off task behavior during the physical activity. Conclusions: Our results suggest that both simulations are valuable active learning tools to aid students’ understanding of natural selection, so decisions about which simulation to use in a given class, and how to best implement it, can be motivated by contextual factors

    Uber eine Eigenschaft der Mengen von Transformationen

    Get PDF
    O pewnej własności zbiorów transformacj

    Iterative Design of a Simulation-Based Module for Teaching Evolution by Natural Selection

    Get PDF
    Background: This research builds on a previous study that looked at the effectiveness of a simulation-based module for teaching students about the process of evolution by natural selection. While the previous study showed that the module was successful in teaching how natural selection works, the research uncovered some weaknesses in the design. In this paper, we used design-based research to investigate how design changes to the module affected not only students’ understanding of the concepts but also their usage of misconceptions in the assessments. We present results from two studies. In study 1, we looked at gains in understanding on a pre and post-assessment for students who used the revised version of the module. We also examined misconception uses in their answer selections. In study 2, we compared the performance on a summative assessment between students who used the revised version and students who used the original version of the module. We also looked at misconception uses in their answer selections. Results: In study 1, we saw a significant improvement in the pre-post assessment for students who used the revised version. In study 2, we did not find a significant difference on the overall performance outcome between students who used the revised and those that used the original version of the module. In both studies, however, we saw a lower use of misconceptions after students used the revised module. In particular, we saw less use of the adaptive mutation misconception, the belief that mutations are adaptive responses to the environment and are biased towards advantageous mutations. This is promising because in the previous study there was no evidence of decreased use of this misconception. Conclusions: Students showed learning gains on all targeted key concepts, and reduced expression of all targeted misconceptions, which was not found previously for students using the older workbook version of the module. In particular, the revised version appears to help students overcome the adaptive mutation misconception. This article demonstrates how design-based research can contribute to the ongoing improvement of evidence-based instruction in undergraduate biology classrooms

    Note-Taking and Science Inquiry in an Open-Ended Learning Environment

    Get PDF
    Note-taking is important for academic success and has been thoroughly studied in traditional classroom contexts. Recent advancements of technology have led to more students taking notes on computers, and in different situations than are common in traditional instructional contexts. However, research on computer-based note-taking is still an emerging area, and findings from these studies are mixed. In this exploratory study, we conducted multilevel analysis to comprehensively investigate the relationship between note-taking measures and subsequent student success at science inquiry among middle school students, using two scenarios of an open-ended learning environment named Virtual Performance Assessments. Analysis revealed an advantage for content elaborative note-taking over content reproductive note-taking conditional on the source of notes taken, but other measures were less consistent between the two scenarios. Implications of the findings and limitations of this research are also discussed

    Exploratory Analysis in Learning Analytics

    Get PDF
    This article summarizes the methods, observations, challenges and implications for exploratory analysis drawn from two learning analytics research projects. The cases include an analysis of a games-based virtual performance assessment and an analysis of data from 52,000 students over a 5-year period at a large Australian university. The complex datasets were analyzed and iteratively modeled with a variety of computationally intensive methods to provide the most effective outcomes for learning assessment, performance management and learner tracking. The article presents the research contexts, the tools and methods used in the exploratory phases of analysis, the major findings and the implications for learning analytics research methods

    How Design Features in Digital Math Games Support Learning and Mathematics Connections

    Get PDF
    Current research shows that digital games can significantly enhance children’s learning. The purpose of this study was to examine how design features in 12 digital math games influenced children’s learning. The participants in this study were 193 children in Grades 2 through 6 (ages 8-12). During clinical interviews, children in the study completed pre-tests, interacted with digital math games, responded to questions about the digital math games, and completed post-tests. We recorded the interactions using two video perspectives that recorded children’s gameplay and responses to interviewers. We employed mixed methods to analyze the data and identify salient patterns in children’s experiences with the digital math games. The analysis revealed significant gains for 9 of the 12 digital games and most children were aware of the design features in the games. There were eight prominent categories of design features in the video data that supported learning and mathematics connections. Six categories focused on how the design features supported learning in the digital games. These categories included: accuracy feedback, unlimited/multiple attempts, information tutorials and hints, focused constraint, progressive levels, and game efficiency. Two categories were more specific to embodied cognition and action with the mathematics, and focused on how design features promoted mathematics connections. These categories included: linked representations and linked physical actions. The digital games in this study that did not include linked representations and opportunities for linked physical actions as design features did not produce significant gains. These results suggest the key role of mathematics-specific design features in the design of digital math games

    Infant Botulism

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66984/2/10.1177_000992289303201105.pd

    Keratan sulphate in the tumour environment

    Get PDF
    Keratan sulphate (KS) is a bioactive glycosaminoglycan (GAG) of some complexity composed of the repeat disaccharide D-galactose β1→4 glycosidically linked to N-acetyl glucosamine. During the biosynthesis of KS, a family of glycosyltransferase and sulphotransferase enzymes act sequentially and in a coordinated fashion to add D-galactose (D-Gal) then N-acetyl glucosamine (GlcNAc) to a GlcNAc acceptor residue at the reducing terminus of a nascent KS chain to effect chain elongation. D-Gal and GlcNAc can both undergo sulphation at C6 but this occurs more frequently on GlcNAc than D-Gal. Sulphation along the developing KS chain is not uniform and contains regions of variable length where no sulphation occurs, regions which are monosulphated mainly on GlcNAc and further regions of high sulphation where both of the repeat disaccharides are sulphated. Each of these respective regions in the KS chain can be of variable length leading to KS complexity in terms of chain length and charge localization along the KS chain. Like other GAGs, it is these variably sulphated regions in KS which define its interactive properties with ligands such as growth factors, morphogens and cytokines and which determine the functional properties of tissues containing KS. Further adding to KS complexity is the identification of three different linkage structures in KS to asparagine (N-linked) or to threonine or serine residues (O-linked) in proteoglycan core proteins which has allowed the categorization of KS into three types, namely KS-I (corneal KS, N-linked), KS-II (skeletal KS, O-linked) or KS-III (brain KS, O-linked). KS-I to -III are also subject to variable addition of L-fucose and sialic acid groups. Furthermore, the GlcNAc residues of some members of the mucin-like glycoprotein family can also act as acceptor molecules for the addition of D-Gal and GlcNAc residues which can also be sulphated leading to small low sulphation glycoforms of KS. These differ from the more heavily sulphated KS chains found on proteoglycans. Like other GAGs, KS has evolved molecular recognition and information transfer properties over hundreds of millions of years of vertebrate and invertebrate evolution which equips them with cell mediatory properties in normal cellular processes and in aberrant pathological situations such as in tumourogenesis. Two KS-proteoglycans in particular, podocalyxin and lumican, are cell membrane, intracellular or stromal tissue–associated components with roles in the promotion or regulation of tumour development, mucin-like KS glycoproteins may also contribute to tumourogenesis. A greater understanding of the biology of KS may allow better methodology to be developed to more effectively combat tumourogenic processes
    • …
    corecore