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Exploratory analysis in learning analytics 

ABSRACT. This article summarizes the methods, observations, challenges and implications for 

exploratory analysis drawn from two learning analytics research projects. The cases include an 

analysis of a games-based virtual performance assessment and an analysis of data from 52,000 

students over a 5-year period at a large Australian university. The complex datasets were analyzed 

and iteratively modeled with a variety of computationally intensive methods to provide the most 

effective outcomes for learning assessment, performance management and learner tracking. The 

article presents the research contexts, the tools and methods used in the exploratory phases of 

analysis, the major findings and the implications for learning analytics research methods. 

KEYWORDS. Learning analytics, computationally intensive mixed methods 

research, game-based learning, virtual performance assessment 

1. Introduction

The promise of learning analytics as a new field of study in education and 

learning sciences has been highlighted in early studies (Shum & Ferguson, 2012; 

Siemens, 2012). However, while several studies have revealed the importance of 

using data, few have highlighted which analytic methodologies are needed at what 

points in the cycle of research to improve the efficacy of higher education 

teaching and learning practices.  

Alongside this methodological challenge, analytics challenges have 

dramatically increased since new digital user interfaces and web based search 

approaches have evolved in recent times, leading to a wider expectation of 

personalized feedback. The increased complexity in the capabilities and roles 

presented in interactive learning experiences and a wider capacity to collect rich 

learner data have not always been used to inform feedback or to improve the 

learner’s experience to date (de Freitas, 2014; Quellmalz et al., 2012). Despite 

these challenges the infusion of data science methods and techniques into learning 

and behavioral science research are providing new tools for giving students more 

feedback when needed and allowing broader personalization approaches to be 

adapted for example through learning management systems (Gibson & de Freitas, 

2014; Gibson, 2012). For these innovations to be adapted more widely into 

learning and teaching practices, new quantitative methods as well as a 

reconceptualization of mixed methods (Tashakkori & Teddlie, 2003) need to be 

adopted.  

This paper aims to discuss applicable exploratory methodologies for learning 

analytics that utilize ‘computationally intensive’ mixed methods in the early 

stages of research. We use the phrase ‘computationally intensive mixed methods’ 

to distinguish from the broad term ‘mixed methods’ that combines qualitative and 

quantitative methods (Creswell, 2003). We specifically mean a new mixture of 

data mining and visualization mixed with a range of regression methods; and 

within the regression methods, a mixture of linear, nonlinear and symbolic 

methods. Roughly speaking, this mixture is a search for best fitting lines, curves 

as well as classes of equations to represent relationships in the data and build 

models of the phenomena under study.  
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The article summarizes our observations and the implications for research 

methods that we have garnered from two learning analytics research projects. One 

project is connected to work at Harvard University, and one is an ongoing 

retention analytics project at Curtin University.  

 

The cases share some common features. First, the case studies involve high-

resolution data collection. High-resolution data in this context means two or more 

orders of magnitude in the number of records per subject compared to the norm in 

educational research, from tens of records to hundreds or thousands of records. 

Compared to the previous norms in educational research in which a pre-test and 

post-test might be two of only a handful of data points, these large datasets offer 

new ways to consider data that should be exploited both in terms of closing the 

loop with users and the need to explore and model longitudinal information about 

learner interactions and performances. This longer duration and more highly 

diverse and detailed data for understanding the learner implies a capability to 

provide more comprehensive information to them and their tutors, more 

scaffolding and feedback for an end-to-end learning experience.  

 

Second, the cases also illustrate the role of technology as an interactive agent 

in the production of data, because some of the data arises from a complex 

interaction product between the learner and the digital learning environment as 

well as from co-production of data by the learner, environment and social context. 

These co-production situations produce highly variable and diverse data sources 

that must be reconciled and interwoven. In particular, we assert that due to this 

feature, new psychometric challenges are emerging that cannot be dealt with by 

standard methods. Third, the data in each of the example cases needs to be 

analyzed relatively quickly in order for people to react, or the learning 

environment to adapt to the learner.  

 

These three features of volume, variety and velocity help explain the rise in 

interest in data science methods in higher education learning analytics. The 

methods described here are associated with ‘big data,’ where information is 

flowing rapidly, is highly varied in format and grain size, and where the unit of 

analysis is quite small compared to the aggregated level where decisions need to 

be made (IBM, n.d.)  

 

Finally, when the aim is to better understand how people learn or how and to 

what degree they have acquired knowledge, there is a need for exploratory and 

iterative psychometric modeling appropriate for each situation. Since the well-

known psychometric models in traditional tests do not readily apply in highly 

interactive digital learning environments, there is considerable uncertainty about 

the affordances of the performance spaces, how people will leave traces through 

the space, and what forms of internal and external validity will apply to the 

meaning of the traces (Choi, Rupp, Gushta, & Sweet, 2010; Clarke-Midura et al., 

2012; Eseryel, Ifenthaler, & Ge, 2013). It seems natural then to assume that an 

iterative exploratory stance is called for when analyzing a newly constructed and 

little-studied virtual performance space. We will first outline the theoretical 

foundations of our research and then share the case examples in order to discuss 

key exploratory analysis methods and findings. 
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2. Data science and exploratory psychometrics 

Data science methods have arisen to deal with quickly accumulating, highly 

diverse data at high volumes such as the signals from atom-smashing experiments, 

large-scale distributed sensor network data, real-time traffic flow data and 

determination of neural pathways during learning and performance. Learning 

analytics in certain circumstances approaches these same levels of complexity, for 

example during the analysis of data from a brain-computer interface (Gonzalez-

Sanchez et al., 2013), or an analysis of the recent history of a university’s student 

retention data (Deloitte, 2010). The cases we will share here are such examples. In 

these kinds of cases, learning analytics needs to integrate new data science 

methods into the traditional panoply of educational research methods and provide 

mechanisms for analyzing digital learning experiences with high resolution and 

time sensitive data involving a diversity of issues such as the role and impacts of 

social and human-to-machine communications, automated learning assistants 

(Hasler, Tuchman, & Friedman, 2013; Nair, Tambe, Marsella, & Raines, 2004), 

learner decisions and judgments by learners as well as experts (Eseryel et al., 

2013), characteristics of multidimensional items and constructs (Behrens, 

Mislevy, Dicerbo, & Levy, 2011), effects of various media as performance 

prompts and the affordances of digital practice and performance workspaces 

(Connolly, Boyle, MacArthur, Hainey, & Boyle, 2012; Dunleavy, Dede, & 

Mitchell, 2008).  

 

A technology-enhanced affordance for learning, for example, might include a 

digital pedagogical or conversational agent (Morris, 2002; Sabourin, Mott, & 

Lester, 2011) that is tutoring or giving hints to someone during a learning 

experience. Analytics might aspire to find patterns in a learner’s decisions during 

a digital game or simulation (Christensen, Tyler-Wood, Knezek, & Gibson, 2011; 

Clarke & Dede, 2010; Rupp, Gushta, Mislevy, & Shaffer, 2010). An assessment 

process giving rise to data for analytics might include students reviewing and 

commenting on each others’ digital creations through open-ended online 

discussions (Ertmer et al., 2007; Van Der Pol, Van Den Berg, Admiraal, & 

Simons, 2008; Webb, 2010) and involving texts that are increasingly amenable to 

natural language processing (Jordan, 2009). A technology-enhanced summative 

assessment might include a multimedia constructed-response item created with an 

online animation and modeling application (Lenhard, Baier, Hoffmann, & 

Schneider, 2007; Mislevy, 2011). In addition, new targets for learning made 

possible by technology-enhancements might be measured on a student’s 

collaboration capabilities based on their responses to receiving remote 

asynchronous expert feedback about how they worked with each other to solve a 

problem and communicate their understandings (Rissanen et al., 2008). Or their 

emotions might be monitored as they work in an engaging virtual world 

experience that unobtrusively documents progression of their leadership and 

ethical development over time (Turkay & Tirthali, 2010). This wide range of 

potential targets of an analysis highlights the need for additional qualifiers 

whenever the term ‘learning analytics’ is used, in order to ensure that appropriate 

theoretical and methodological frameworks have been selected to guide the 

research process. Here, we are asserting that reporting on the exploratory modes 

in both analytics and psychometrics helps clarify a study. 
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Exploratory analysis is concerned with understanding the structure and 

relationships of data (Morgenthaler, 2009; Tukey, 1977) which can lead to new 

questions and hypotheses. It can be thought of as an earlier step in the research 

process than hypothesis formation; however, we hold that the approach should be 

part of an iterative process of any well-constructed computationally intensive 

mixed methods research program. Psychometrics is the science of measuring 

mental capacities and processes (Kline, 1998). We hold that new psychometric 

models are needed in cases where the subject is interacting in a dynamic digital 

environment.  

 

We assert that the research process must utilize iterative exploratory stances 

when the digital spaces are relatively new and unexplored. A synthesis of 

methods, perhaps unique to each digital performance space and using 

computationally intensive mixed methods, we believe is helpful to lead to 

observations and inferences about what someone knows and can do based on their 

evolving interactions in a digital media learning environment. These observations 

are provisional during the exploratory phase of research and are not fully codified 

due to several features of interactive digital learning environments (e.g. time and 

space dilation, dynamic interactions with the computer, feedback cycles, 

complexity and entanglement), which make the streams of data more complex 

than snapshots of a process frozen in time (Gibson & Jakl, 2013). 

3. Two Cases of Learning Analytics in Higher 
Education 

 

The first case concerns the analysis of learner actions in a game-based virtual 

performance assessment created at Harvard (Clarke-Midura, Code, Dede, 

Mayrath, & Zap, 2012) and analyzed by one of the authors (Gibson & Clarke-

Midura, 2013). The second case concerns a longitudinal retention study based on 

five years of performance data from 52,000 students from a wide range of 

distributed sources of information (de Freitas et al., n.d.). These two cases 

highlight key issues that arise when undertaking learning analytics studies in 

higher education and point to a need for a new form of mixed methods when 

working with big data in learning analytics research. 

3.1 Virtual Performance Assessment 

 

The first of the two learning analytics cases concerns the question of whether and 

in what ways user actions in a game can be predictive of the final assessment 

grade related to knowledge and skills acquisition. The case comes from a purpose-

built game of the Virtual Assessment Project at the Harvard Graduate School of 

Education (Gibson & Clarke-Midura, 2013), which has an educative aim to 

examine whether the game is able to assess middle school students’ abilities to 

design a scientific investigation and construct a causal explanation (Clarke-

Midura, Mayrath, & Dede, 2010). The assessments start out with one of two 

problems that students must solve: Why is there a frog with six legs? What is 

causing a population of bees to die? The assessments were designed in the Unity 

game engine (http://unity3d.com/) and have the look and feel of a videogame 

(Figure 1). 
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Figure 1. Screenshots of two Virtual Performance Assessments  

 

Participant actions (e.g. opening a page, saving a note) were time-stamped and 

labeled as an event. Analytic data from two pilots consisted of 1987 users 

(423,616 event records) in the frog assessment and 1958 users (396,863 event 

records) in the bee assessment. The analysis included demographic information 

about students (age, gender, class, teacher), the starting prediction for the cause of 

the problem, raw event data (e.g. up to when a student made their final claim 

about the problem) and human-scored constructs of designing a causal 

explanation and designing a scientific investigation. 

 

The purpose of the analysis was to search for patterns of action that might 

relate to the performance of the user correlated with the student’s final claim. 

Could the action log and score data tell us about the user’s performance? 

Additional questions included: 

 Is there a relationship between overall duration and score level? 

 Were there performance differences that differed by gender, age, and grade? 

 Was there a relationship between someone’s prediction at the beginning of the 

assessment and their claim at the end? 

 

To address the question about the relationship between a student’s prediction and 

claim, we constructed a matrix of the empirical probabilities (the relative 

frequency of an outcome in relation to a number of trials) constructed from a 

count of the population’s actions which assist in creating Bayesian inferences 

about the scientific problem-solving path-maps of learners (Stevens, Johnson, & 

Soller, 2005). The probabilities can also be constructed for a subset or a 

comparable population, and can be built with a focus on any action or set of 

actions. In this case, we chose to count the prediction and claim actions by the 

whole population. In the bees and frogs assessments, each student made a 

prediction, then explored the digital space collecting evidence that was used to 

make a claim at the end of the session. Our matrix thus had seven categories of 

‘prediction’ rows (e.g. p1, p2…p7) crossed with 5 categories of ‘claim’ columns 

(e.g. c1, c2…c5). The empirical probability of a student making the prediction 

‘p1’ is the row sum for p1 over the sum of all predictions. The probability of a 

shift in thinking from prediction to claim is the conditional probability of 

predicting some claim given both the probability of claiming and the prior 

probability of the prediction, using standard probability theory. 

 

We concluded that in a similar population of middle school students, we 

would expect that 38% would eventually make the same claim as an expert but 

only 8% would begin the assessment with that prediction. So, since a significant 

portion of the test takers arrived at this conclusion after interactions in the virtual 
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assessment, this indicated to us that the virtual performance assessment 

experience might itself be educative and that user actions might provide evidence 

of learning as well as thought processes. This early result could also be obtained 

by traditional pre- and post- methods in a multivariate approach; however, the 

point here is that the analysis at this stage is viewing the landscape of potential 

ending points (the claims) as probabilities of trajectories in the space of 

possibilities of action rather than as factors in a result. The ‘pre’ condition of the 

choice of a prediction by the student is a starting point for trajectories that help 

explain the effect of working in the space with certain materials over time, and in 

some order, to lead the student to a supported conclusion. The analysis we are 

seeking has more to do with the journey than the destination, and as much to do 

with the clusters and sequences as the final resting position on the ‘right claim.’ 

 

Before we explored more specific action patterns, such as which doors did 

people open and who did people talk to, we wondered how the total amount of 

time spent in the simulation would relate to the outcome. Symbolic regression 

using the free educator version of Eureqa (Schmidt & Lipson, 2009) was selected 

as the method to obtain a specific predictive mathematical expression for the 

relationship between overall duration and score level. The mathematical 

expression goes beyond the correlational idea of ‘more time = higher score’ to 

provide a predictive equation of the optimal time and configuration for highest 

performance. The symbolic regression method produces a range of equation 

options representing a class of equations that best meets a fitness criterion, which 

serves as the goal of an evolutionary algorithm search. In all cases reported here, 

the method included cross-validation of 33% of the data set for training to 66% of 

the data used for prediction, in randomly selected tests conducted thousands of 

times for each proposed solution.  

 

The analyst then selects a solution from the range of options resting on the 

Pareto Curve representing the trade-off in efficiency between error and 

complexity: the less complex the mathematical expression, the higher the error 

and vice versa (Figure 2). That selection is then one equation in a constructed set 

of nonlinear partial differential equations that describe the network of causative 

relations in the event window, so the choice of the solution on the Pareto Curve is 

a modeling decision with implications for the overall complexity and semantics of 

the final complete set of algorithms of the network. This example provides 

evidence that predictive (generally nonlinear) relationships can be discovered via 

symbolic regression. 

 



7 

 

Figure 2.  Graphs of time on task (x) versus total score (y) in the upper right corner; and a selected 

solution on the Pareto curve (x = complexity, y = error) in the lower right corner. A range of 

solutions is presented in the top left box with varying degrees of complexity and error; the learning 

analyst selects a solution to minimize both error and complexity (the highlighted dot in the lower 

right box) and then later builds a network representation via a canonical process that fully details 

the solution as a system of nonlinear equations. 

 

To explore action patterns more deeply, we then conducted rule discovery using 

the ‘Apriori’ algorithm (Hegland, 2005; Witten & Frank, 2005) to find the most 

prevalent co-occurrences of actions. We used this and other algorithms in the data 

mining toolset ‘Weka’ (Hall et al., 2009) to perform exhaustive searches and 

optimization routines, which resulted in a descriptive and associative rule set 

(compared to the deterministic or causative mathematical rule set of the symbolic 

regression method). Such an associative rule set, when considered with the 

confidence of a rule discovered by symbolic regression, can elucidate the 

hierarchal (spatial) as well as temporal structure (Campanharo, Sirer, Malmgren, 

Ramos, & Amaral, 2011) of the relationships in a virtual performance assessment 

created by the paths of multiple users traversing the space and utilizing resources.  

 

The discovery of association rules among qualitative data can also lead to 

network representations that are amenable to additional analysis (Han, Cheng, 

Xin, & Yan, 2007). A digraph (Figure 3) is such a network representation which 

allows visual inspection comparing it to alternative graphs made by less 

successful students (not shown). A digraph was created based on the association 

rule network (Baker, 2010; Han et al., 2007) for each of the cells in the empirical 

probability matrix. The important link here is to the time and space complexity of 

the digital learning environment, which underscores the need for iterative 

exploratory analytics as well as iterative psychometric inferences in order to begin 

to understand what groups of students have done in the virtual space.  

 

In a digraph the edge from one node to another has a directional meaning – as 

in causality or implication. Thus, an association rule can be directional; for 

example if the rule says that 100% of the people who conduct ‘research_3’ then 

go on to conduct ‘research_1’ but 0% conducted those activities in the reverse 

order, we can draw a circle for research_3 with an arrow leading to research_1 

(Figure 3). We found by visual inspection of the digraphs for each pair of 

predictions-to-claims in the empirical probability matrix, that students who did 
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not have a structure of scientific investigation similar to Figure 3 were more likely 

to have missed important evidence and reached a weaker conclusion.  

 

 

Figure 3. Digraph of association rules in a network. Labels in this network graph represent specific 

activities and patterns in the digital learning experience. For example, experiment_1 might be a 

test of the impact of an environmental factor on the frogs (or bees). Students who conducted these 

specific tests in these orders reached stronger conclusions. 

 

We also used a clustering method on event-level user actions based on closeness 

determined by the ‘Expectation Maximization’ algorithm (Dempster, Laird, & 

Rubin, 1977) and found that clusters of events mapped closely to claims, but were 

more complex, because they were formed from all available data. For example, 

students who shared similar search and resource utilization strategies might be 

clustered together, even though they reached different conclusions about the data 

and made different claims. We found that action pattern sequences could be 

identified only with the aid of the virtual assessment designers (domain experts) 

and that these higher aggregations of action-sequences that we called ‘motifs’ 

were more meaningful units of analysis than without the domain expert 

knowledge of the virtual performance space. In this sense, the data cannot speak 

to the intentions of the designers without the higher-level knowledge of 

meaningful sequences of actions. For example, it was not informative to cluster all 

the ‘open door’ actions, but instead to cluster the doors with geographic 

knowledge of the virtual space (e.g. was it a door to a particular lab or farmhouse, 

where one could have a conversation with a particular actor agent). 

 

In this case example, analysts were able to predict one of the claim groups 

based on visual inspection of the absence of resource utilization. The exploration 

by clustering methods also led to the analysts making structural recommendations 

to change the game design as well as the data acquisition labeling, without which 

all students had almost identical access to all the affordances of the virtual 

performance assessment, rendering cluster analysis impotent for learning 

analytics. An alternative game design model could channel a participant into 

different subsets of affordances based on previous decisions. However, a 

channeled structure tends to force a limited set of choices and thereby restrict the 

user’s degrees of freedom, so care has to be taken in the design of both the 

learning experience and data labeling for collection. 
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3.2 Retention Analytics 

In the second case, the analytics team aimed to understand why some students 

succeed in higher education courses of study while others drop out, so that 

appropriate support and academic guidance can be provided. An initial study was 

undertaken in 2010 in the Curtin Business School and a second larger study across 

the entire university was recently concluded in 2013, both with significant 

technical and research assistance from Deloitte Consulting Services.  

 

Our main findings supported two hypotheses on student retention in the wider 

literature, and confirmed the importance of academic and curriculum engagement 

for supporting students in the first year of undergraduate study. For example, 

research-based observations have been made concerning higher rates of retention 

for international than for Australian students (Olsen, 2007) and our results tended 

to confirm these findings. However, within the category of international students, 

our new analysis pointed to a need to understand the specifics of who is retained 

and who drops out, how students are similar to and differ from others, how 

behavioral patterns and retention results vary across the university’s offerings, and 

what can be done to intervene and improve retention, since the cost of attrition is 

estimated to be about 2 million dollars for every 50 students who leave in the 

second year (de Freitas et al., n.d.).  

 

The analytics methodology in this case followed a staged process of data 

acquisition, preparation, discovery and analysis, which centered on the creation 

of a self-organizing map (SOM) that was further shaped by the analytics team 

(Figure 4). The SOM is a semi-supervised machine learning method based on a 

multidimensional similarity metric that groups together related data clusters of 

individuals who share similar behavioral features, or attributes. It is semi-

supervised because the analytics team intervenes in cycles of machine learning to 

feed in newly transformed data into the modeling process as issues such as 

collinear relationships (data that reinforces and overstates its impacts on a model) 

are discovered. 

 

The staged data collection and analysis process engaged a wide spectrum of 

key stakeholders, with data sources and hypotheses statements coming from and 

going back into a series of public engagements across the university. The study 

thus used robust traditional mixed methods research with both quantitative and 

qualitative foundations for data collection and analysis, and then during the 

analysis phases, additional computationally intensive mixed methods as defined in 

this article.  

 

Data sources included several large sets of anonymous, post-hoc data from the 

university’s student data application, the learning management system, post-unit 

student evaluation surveys, online library, interviews and focus group sessions, 

concentrating on a four-year period of the university’s recent history. Since some 

students exit and then re-enter the university after more than one year has elapsed, 

the data preparation phase included time-event segmentation in the process of 

defining the data that was in scope. (This method differs from standard year-on-

year retention accounting in what we termed ‘lifetime student retention’). The 

analytics team linked additional external datasets including census data, social 

economic status indexes and geocoding.  
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Over 1200 attributes for each student were considered (62 million elements), 

which led to a need for data reduction methods such as not including a set of data 

that was known to be the opposite of another set (e.g. males versus females) and 

sets of variables with 1:1 relationships signifying in many cases, multi-collinearity 

(e.g. the combined effect of linked variables that lead to overstating their 

influence and drowning out the influence and details of other variables). A 13 

million-element ‘Analytic Data Set (ADS) was extracted and served as the basis 

for the SOM semi-supervised machine learning model, which was trained on 

52,000 students with over 250 attributes, including some online students and all 

part-time and onsite students at the Bentley main campus. The ADS dataset can 

now support future cross-validating analyses, for example, using statistical and 

symbolic regression, neural networks and social network analysis as well as 

alternative data mining and pattern discovery methods, to be conducted by a 

Teaching and Learning research group that has been established to build the 

university’s analytics capacity. 

 

During a four-week data collection period, while all available data sources 

were being combined, cleaned, and made ready for data exploration, the analytics 

team held a series of workshops and focus groups with staff and students to create 

a wide range of hypotheses about the possible causes and conditions of retention 

and attrition. The focus group sessions were designed to provide hypotheses to be 

used to query the ADS. Over 200 hypotheses were generated by these ‘diverge 

workshops’ and were then tested by the analytics team against the best-fit SOM 

model of the data. A second workshop series with stakeholders then tested 50 of 

the key hypotheses for plausibility with the model using visual inspection, and 

involved stakeholders in interactive group exploration of the data made possible 

via interactive visualizations created with support and evidence from the data’s 

statistical characteristics. The analysis of the dataset has been made available in 

(de Freitas et al., n.d.) 

 

Figure 4. Data sources, analytic data set (ADS) and self-organizing map 
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Since the initial analysis, which uncovered hidden clusters of students at risk who 

would not have been identified prior to the research, the student services team at 

Curtin University has further explored interventions and is re-thinking its 

strategies and planning for future data refreshes on a daily basis. The project kick-

started two learning analytics working groups, one in the Information 

Technologies group devoted to building an enterprise data bus to integrate the 

university’s information systems and one in Teaching and Learning to build the 

university’s research capacity to utilize a continuous stream of student 

information. 

4. Discussion 

The case studies have both shown how differently data can be used to 

understand more completely the learner’s experience. In the game example we 

could see how the individual’s experience can be modelled and mapped 

effectively and feedback can be provided throughout the experience. In the 

retention study the benefit of using performance data throughout the life cycle of 

the learner shows how interventions can be better planned and deployed at the 

right moments during the student’s study. Both cases illustrate the potential of 

performance driven metrics, but also show the value of using more than one 

method of analysis.  

 

The cases outlined are emblematic of learning analytics research on digital 

learning experiences that require exploratory data analysis (Tukey, 1977), that is, 

an analysis which does not start with a hypothesis, but searches initially for 

patterns in the data in order to discover broad sets of questions and potential 

hypotheses that require further study.  

 

Visual inspection was an important step in the exploratory process in the 

cases. In addition, determining features for exploratory analyses are, among other 

things, the volume, variety and velocity of the data. The records-per-unit-of-

analysis described here for example, varied across the three cases from 175 to 250 

per subject in while the total data-element sizes of the data based varied from 

31,000 to 13 million.  

 

Data mining methods (e.g. clustering, machine learning, symbolic regression, 

network analysis) were used in the cases; additionally, causal explanations (e.g. 

using empirical probabilities, network analysis and symbolic regression) were 

sought in the cases, driven by the research questions. A number of methods and 

tools new to our team were applied in the course of these studies, which has begun 

to build a set of methodological ideas and approaches for application in future 

research. We have highlighted these implications in the summaries below. 

 

Transforming data for data mining in all cases involved both reduction moves 

and intermediate pattern aggregations which do not reduce the data. For 

example, the clustering in Case 1 was ineffective until subject domain experts 

identified a two or three-element chain of actions we have called a motif. In Case 

2, reductions followed traditional lines (e.g. finding multicollinearities), but in 

addition, the self-organizing map (SOM) is also a form of motif creation via 

transformation since the unsupervised and supervised phases of the semi-
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supervised machine learning method chooses a different subset of attributes for 

each cell of the map to maximize the local similarity of neighboring groups.  

 

The advantage of unsupervised machine learning in this case was that no 

prior hypotheses or assumptions biased the model, and the resulting best-fit map 

is then available for multiple hypothesis testing as overlays on the SOM, while the 

supervised reduction of the dataset allowed finer and finer grain sizes of the 

underlying population similarities. This method allowed us to test quite a large 

number of hypotheses compared to traditional single hypothesis testing research 

methods. 

 

The first case, the Harvard virtual performance assessment in science, 

illustrates several features of exploratory data analysis of digital learning 

experiences. First, the context was captured in the event data along with the 

learner action, decision, and product.  However, that context needed to be 

effectively reconstructed from the smallest items of data into larger clusters of 

information. For example, a data element named ‘opened door’ by itself was 

relatively meaningless compared to knowing that it was a particular door, opened 

after another significant event such as talking to a scientist. Thus, patterns of 

action were transformed into motifs, which then became the transformed units of 

analysis. This concept of the unit of analysis containing the context for 

interpretation may be a new methodological requirement for the analysis of digital 

learning experiences and needs further study. It also highlights the fact that once 

the context is understood, the motifs themselves can become features for machine 

learning training, as well as for embedding in future iterations of the digital 

learning experience as filters or triggers for immediate feedback to the learner. 

These features may not be identified or understood until a few iterations of the 

exploratory process have occurred. 

 

Second, as a large number of users traverse through the network of 

possibilities in a digital problem space, key movements of the population within 

the network can be counted and then used as the basis for empirical prior 

probabilities. In particular, each pathway in such a network can be further 

characterized or specified with a predictive nonlinear mathematical relationship 

found for example through symbolic regression. Or, alternatively an association 

rule network can be created that distinguishes user action patterns and motifs by 

the count prevalence of the trajectories from one resource to another. For 

example, if 100% of the population goes to resource 3 after resource 1 (skipping 

over and not utilizing resource 2), then with a very high probability (and if the 

sample is a good sample of the greater population), the next user entering the 

system will follow that path and a highly probable inference can be made about 

what the person now using resource 1 will do next. A limitation of the research 

reported here is that we were not able to test whether the probabilities were a good 

basis for prediction in a future development cycle of the science game. This 

particular finding is thus limited by being a post-hoc analysis, and needs to be 

validated by a future iteration of the science game. 

 

Third, the complex set of data relationships discovered by the exploratory 

methods in case 1 bore a meaningful structural relationship to the problem space; 

this is possibly a generalizable observation, but needs to be studied further. 

Validating evidence for generalizability in other studies can be found. For 
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example in structural studies of the brain based on the networks entailed during 

certain tasks and that differ from task to task (Sporns, 2011). Additionally, a 

cluster analyses of a problem space can reveal that some resources are critical to 

success and others are ignored and not important to the most successful learners 

(Quellmalz et al., 2012) or a network visualization of the problem space can 

highlight how people relate to each other and a task such as quoting and using 

scientific resources (Bollen et al., 2009). 

 

In the second case, exploratory methods assisted in a staged process of 

stakeholder involvement in data acquisition, preparation, discovery and analysis. 

A semi-supervised machine learning method used during the exploratory phase 

utilized an unsupervised self-organizing map that was created based on a 

multidimensional similarity metric and facilitated the simultaneous testing of over 

50 hypotheses. The three aspects of big data - volume, variety and velocity - are 

most noticeable in this case. The volume of data comprised 13 million records for 

52,000 subjects, or about 250 records per subject. A wide variety of data was 

collected from ten digital sources that included study patterns, performance in 

units of study, attendance, survey question responses, demographic profiles, 

library records, and other diverse sources. The velocity element was represented 

by the short timeline for data acquisition, preparation, discovery and analysis 

managed in stages and engaging over 200 people in focus groups and feedback 

sessions. Here as in the other cases, nonlinear and symbolic mixed methods were 

combined iteratively with linear methods to obtain results, perhaps defining a 

specific role for exploratory data analysis in computationally intensive mixed 

method research. 

 

5. Conclusion 

The paper has revealed how powerful learning analytics can be when 

computationally intensive mixed methods are used to ensure that multiple points 

of data are integrated during a study. Methodological observations from the two 

learning analytics research projects illustrates the wide scope of data set sizes and 

resolutions and the new analytic methods that are now becoming increasingly 

available for research in the learning sciences. The computationally intensive 

mixed methods briefly outlined in this article are part of an expanding framework 

of educational research methods that enables researchers to deal with complexity 

in time and event structures involving complex data in higher education digital 

learning experiences. These methods are part of a new basis for iterative 

exploratory analyses and psychometrics, which is emerging as researchers 

undertake to understand what learners know and can do based on their interactions 

in digital learning spaces. 

 

This paper brought together lessons learnt from two studies using large data 

to improve learning and teaching and provided our insights concerning 

methodology and tool selection. We argue in favor of mixed approaches that 

include computationally intensive exploratory stages that iterate between analytic 

findings and psychometric inferences. As these methods become more automatic 

they will support more timely and effective feedback to students and tutors 

through in situ co-construction of performance tracking as well as monitoring 

information about learning and teaching.  
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Future studies will aim to close the loop between the system and the learner 

by producing dashboards and feedback models that will allow us to better model 

learning patterns distilled from the interaction between students and digital 

learning environments. It is hoped that this work will advance the fields of 

learning analytics and psychometrics by for example, introducing fast feedback 

dashboards driven by analysis that has been designed alongside students and 

tutors. 

 

While the study of learning analytics is relatively new, it is envisaged that 

there is a large potential for impact upon the learner’s experience, through 

outreach and social networking, recommendations, more engaging learning 

experiences, rapid feedback, retention support and lifelong networking. However, 

further study needs to be undertaken to explore how we can automate some of the 

methods described here in order to provide effective feedback to the learner and 

tutor, what are the benefits and limitations of rapid feedback and how some of the 

more complex methods can be deployed to the best effect.  

 

We predict that the fields of gamification, technology enhanced learning and 

learning analytics will have capacity to lever off one another to enhance the 

learning experience, and welcome deeper studies of large datasets requiring 

computationally intensive mixed methods that support new approaches in digital 

media teaching and learning. 
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