34 research outputs found

    The global biogeography of tree leaf form and habit.

    Get PDF
    Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17-34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling

    The global biogeography of tree leaf form and habit

    Get PDF
    Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17-34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling

    The global biogeography of tree leaf form and habit

    Get PDF
    Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17–34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling

    The global biogeography of tree leaf form and habit

    Get PDF
    Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17-34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cyclin

    The global biogeography of tree leaf form and habit

    Get PDF
    Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17-34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling

    The global biogeography of tree leaf form and habit

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this recordData availability: Tree occurrence data from the Global Forest Biodiversity initiative (GFBi) is available upon request via Science-I (https://science-i.org) or the GFBi website (https://www.gfbiinitiative.org/). Information on leaf habit (evergreen vs deciduous) and leaf form (broadleaved vs needle-leaved) came from the TRY database (https://www.try-db.org). Additional, leaf-type data came from the Tallo dataset (https://zenodo.org/record/6637599). Plot-level soil information came from the World Soil Information Service (WOSIS) dataset (https://www.isric.org/explore/wosis).Code availability: All code is available at https://doi.org/10.5281/zenodo.7967245.Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17-34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling

    The global biogeography of tree leaf form and habit

    Get PDF
    Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17-34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling

    Dynamics of the natural development phases of stands in the Bialowieski National Park

    No full text
    The aim of the research was to determine the current changes occurring in the natural forest using the classification based on the natural phases of stand development. The oldest part of the Białowieski National Park, formerly known as the Strict Reserve, was the object of the study. Material was collected from temporary sample plots (460 ones both in 1995 and 2005) and 160 permanent sample plots (in the years 2000, 2002 and 2004). Leibundgut’s classification was used to determine the natural development phases. All of them occurred in the Białowieski National Park in variable proportions, and this structure changed during the study period. They differed in terms of standing volume, tree density, total tree height of regeneration, current volume increment, losses and changes in standing volume. The regeneration of stands preceded in four different ways – in open areas, under the overstory of reduced closure, in small gaps or continuously when replacing separate dead trees

    Inventory of merchantable timber volume using aerial photography

    No full text
    Inventory of the growing stock in the territory of the Milicz Forest District was made using the combined, two−phase method. 1980 sample plots were measured on aerial photographs that constituted Phase I of the inventory. Phase II sampling consisted of 267 ground (permanent) plots and corresponding airphoto plots depending on their location in the photograph. In the airphoto sample plots, the following characteristics were measured (or controlled): tree height and age, degree of crown cover, species composition. Taking into consideration the relationship between the results of standing volume measurements on ground sample plots and stand characteristics on airphotos, the growing stock in age sub−classes and in the entire Forest District was calculated. Using aerial photography in forest survey and growing stock inventory, the cost of forest management planning operations is likely to be comparable to the cost of such operations performed in the traditional way

    Forecast of changes in the tree species composition of forest stands in the Bialowieza National Park

    No full text
    The studies initiated by Włoczewski in 1936 revealed changes in the species composition of forest stands in the Białowieża National Park. This led to the question about what these changes would be in the future. The aim of our study was to predict changes in the volume of tree species in the so called Strict Reserve in the Białowieża National Park over the period of 40 years. A size−class growth model was developed for this purpose. The average merchantable timber volume for each of the eleven taxa was calculated for the successive 10−year intervals, and the increase in standing volume as well as the volume of tree loss (mortality) and ingrowth were calculated for these intervals. The empirical material was taken from the permanent and temporary sample plots. The permanent plots (160) were measured in 2000, 2002, 2004 and 2011. The empirical data were used to determine, separately for each species, the relationship between trees dbh and mortality (fig. 1), diameter growth (fig. 2) or the rate of saplings (height of 0.3−1.3 m) growth into the first dbh class (0.1−1.9 cm). The temporary sample plots (460) were measured in 1995 and 2005, and the data were used to validate the size−class growth model and predict timber volume in the period 1995−2005 (tab.). The results of the validation may indicate significant changes in standing volume for the majority of tree species in the period 2005−2045 (fig. 3). In 2045, hornbeam will dominate. The volume increment in the period 2005−2045 will remain at almost the same level, the volume of tree loss will decrease and the volume of ingrowth will slightly increase, beginning from 2015 (fig. 4). Only five taxa will have a significant share in the ingrowth throughout the period 2005−2045, of which approx. 85% will be hornbeam in the period 2035−2045 (fig. 5). The observed changes in the species composition of forest stands in the Białowieża National Park may be the result of global, regional as well as local factors such as the pressure of herbivorous ungulates on young trees. Anticipating changes in the structure of forest stands may be useful in planning the protection of forest areas by reducing the impact of local factors on forest stands (regeneration) in an indirect way
    corecore