109 research outputs found

    Two-flow magnetohydrodynamical jets around young stellar objects

    Full text link
    We present the first-ever simulations of non-ideal magnetohydrodynamical (MHD) stellar winds coupled with disc-driven jets where the resistive and viscous accretion disc is self-consistently described. The transmagnetosonic, collimated MHD outflows are investigated numerically using the VAC code. Our simulations show that the inner outflow is accelerated from the central object hot corona thanks to both the thermal pressure and the Lorentz force. In our framework, the thermal acceleration is sustained by the heating produced by the dissipated magnetic energy due to the turbulence. Conversely, the outflow launched from the resistive accretion disc is mainly accelerated by the magneto-centrifugal force. We also show that when a dense inner stellar wind occurs, the resulting disc-driven jet have a different structure, namely a magnetic structure where poloidal magnetic field lines are more inclined because of the pressure caused by the stellar wind. This modification leads to both an enhanced mass ejection rate in the disc-driven jet and a larger radial extension which is in better agreement with the observations besides being more consistent.Comment: Accepted for publication in Astrophysics & Space Science. Referred proceeding of the fifth Mont Stromlo Symposium Dec. 1-8 2006, Canberra, Australia. 5 pages, 3 figures. For high resolution version of the paper, please click here http://www.apc.univ-paris7.fr/~fcasse/publications.htm

    Human papillomavirus infection is not related with prostatitis-related symptoms: results from a casecontrol study.

    Get PDF
    This study highlights that prostatitis-like symptoms are unrelated to HPV infection. Secondary, we highlight the high prevalence of asymptomatic HPV infection among young heterosexual men

    Human papillomavirus infection is not related with prostatitis-related symptoms: results from a casecontrol study.

    Get PDF
    PurposeTo investigate the relationship between human papillomavirus (HPV) infection and prostatitis-related symptoms.Materials and MethodsAll young heterosexual patients with prostatitis-related symptoms attending the same Center from January 2005 to December 2010 were eligible for this case-control study. Sexually active asymptomatic men were considered as the control group. All subjects underwent clinical examination, Meares-Stamey test and DNA-HPV test. Patients with prostatitis-related symptoms and asymptomatic men were compared in terms of HPV prevalence. Moreover, multivariable Cox proportional hazards regression analysis was performed to determine the association between HPV infection and prostatitis-related symptoms.ResultsOverall, 814 out of 2,938 patients (27.7%) and 292 out of 1,081 controls (27.0%) proved positive to HPV. The HPV genotype distribution was as follows: HR-HPV 478 (43.3%), PHR-HPV 77 (6.9%), LR-HPV 187 (16.9%) and PNG-HPV 364 (32.9%). The most common HPV genotypes were: 6, 11, 16, 26, 51, 53 and 81. No difference was found between the two groups in terms of HPV infection (OR 1.03; 95% CI 0.88-1.22; p = 0.66). We noted a statistically significant increase in HPV infection over the period 2005 to 2010 (p < 0.001) in both groups. Moreover, we found a statistically significant increase in HPV 16 frequency from 2005 to 2010 (p = 0.002).ConclusionsThis study highlights that prostatitis-like symptoms are unrelated to HPV infection. Secondary, we highlight the high prevalence of asymptomatic HPV infection among young heterosexual men

    Magnetized Tori around Kerr Black Holes: Analytic Solutions with a Toroidal Magnetic Field

    Full text link
    The dynamics of accretion discs around galactic and extragalactic black holes may be influenced by their magnetic field. In this paper we generalise the fully relativistic theory of stationary axisymmetric tori in Kerr metric of Abramowicz et al.(1978) by including strong toroidal magnetic field and construct analytic solutions for barotropic tori with constant angular momentum. This development is particularly important for the general relativistic computational magnetohydrodynamics that suffers from the lack of exact analytic solutions that are needed to test computer codes.Comment: accepted for publication in MNRAS after substantial revision of the section on simulation

    Infrared Photometry of Red Supergiants in Young Clusters in the Magellanic Clouds

    Get PDF
    We present broad-band infrared photometry for 52 late-type supergiants in the young Magellanic Clouds clusters NGC 330, NGC 1818, NGC 2004 and NGC 2100. Standard models are seen to differ in the temperature they predict for the red supergiant population on the order of 300K. It appears that these differences most probably due to the calibration of the mixing-length parameter, αP\alpha_{P}, in the outermost layers of the stellar envelope. Due to the apparent model dependent nature of αP\alpha_{P} we do not quantitatively compare αP\alpha_{P} between models. Qualitatively, we find that αP\alpha_{P} decreases with increased stellar mass within standard models. We do not find evidence for a metallicity dependence of αP\alpha_{P}.Comment: 11 pages, 4 figures. AJ accepte

    Analytical time-like geodesics

    Full text link
    Time-like orbits in Schwarzschild space-time are presented and classified in a very transparent and straightforward way into four types. The analytical solutions to orbit, time, and proper time equations are given for all orbit types in the form r=r(\lambda), t=t(\chi), and \tau=\tau(\chi), where \lambda\ is the true anomaly and \chi\ is a parameter along the orbit. A very simple relation between \lambda\ and \chi\ is also shown. These solutions are very useful for modeling temporal evolution of transient phenomena near black holes since they are expressed with Jacobi elliptic functions and elliptic integrals, which can be calculated very efficiently and accurately.Comment: 15 pages, 10 figures, accepted by General Relativity and Gravitatio

    The association of APOE ε4 with cognitive function over the adult life course and incidence of dementia: 20 years follow-up of the Whitehall II study

    Get PDF
    Background: Approximately 25% of the general population carries at least one ε4 allele of the Apolipoprotein E (APOE ε4), the strongest genetic risk factor for late onset Alzheimer’s disease. Beyond its association with late-onset dementia, the association between APOE ε4 and change in cognition over the adult life course remains uncertain. This study aims to examine whether the association between Apolipoprotein E (APOE) ε4 zygosity and cognition function is modified between midlife and old age. Methods: A cohort study of 5561 participants (mean age 55.5 (SD = 5.9) years, 27.1% women) with APOE genotyping and repeated cognitive tests for reasoning, memory, and semantic and phonemic fluency, during a mean (SD) follow-up of 20.2 (2.8) years (the Whitehall II study). We used joint models to examine the association of APOE genotype with cognitive function trajectories between 45 and 85 years taking drop-out, dementia, and death into account and Fine and Gray models to examine associations with dementia. Results: Compared to non-carriers, heterozygote (prevalence 25%) and homozygote (prevalence 2%) APOE ε4 carriers had increased risk of dementia, sub-distribution hazard ratios 2.19 (95% CI 1.73, 2.77) and 5.97 (95% CI 3.85, 9.28) respectively. Using data spanning 45–85 years with non-ε4 carriers as the reference, ε4 homozygotes had poorer global cognitive score starting from 65 years; ε4 heterozygotes had better scores between 45 and 55 years, then no difference until poorer cognitive scores from 75 years onwards. In analysis of individual cognitive tests, better cognitive performance in the younger ε4 heterozygotes was primarily attributable to executive function. Conclusions: Both heterozygous and homozygous ε4 carriers had poorer cognition and greater risk of dementia at older ages. Our findings show some support for a complex antagonist pleiotropic effect of APOE ε4 heterozygosity over the adult life course, characterized by cognitive advantage in midlife

    Ca II Triplet Spectroscopy of Giants in SMC Star Clusters: Abundances, Velocities and the Age-Metallicity Relation

    Get PDF
    We have obtained spectra at the Ca II triplet of individual red giants in seven SMC star clusters whose ages range from ~4 to 12 Gyr. The spectra have been used to determine mean abundances for six of the star clusters to a typical precision of 0.12 dex. When combined with existing data for other objects, the resulting SMC age-metallicity relation is generally consistent with that for a simple model of chemical evolution, scaled to the present-day SMC mean abundance and gas mass fraction. Two of the clusters (Lindsay 113 and NGC 339), however, have abundances that ~0.5 dex lower than that expected from the mean age-metallicity relation. It is suggested that the formation of these clusters, which have ages of ~5 Gyr, may have involved the infall of uneriched gas, perhaps from the Magellanic Stream. The spectra also yield radial velocities for the seven clusters. The resulting velocity dispersion is 16 +/- 4 km/sec, consistent with those of the SMC planetary nebula and carbon star populations.Comment: 28 pages including 4 figure

    Magnetohydrodynamic jets from different magnetic field configurations

    Full text link
    Using axisymmetric MHD simulations we investigate how the overall jet formation is affected by a variation in the disk magnetic flux profile and/or the existence of a central stellar magnetosphere. Our simulations evolve from an initial, hydrostatic equilibrium state in a force-free magnetic field configuration. We find a unique relation between the collimation degree and the disk wind magnetization power law exponent. The collimation degree decreases for steeper disk magnetic field profiles. Highly collimated outflows resulting from a flat profile tend to be unsteady. We further consider a magnetic field superposed of a stellar dipole and a disk field in parallel or anti-parallel alignment. Both stellar and disk wind may evolve in a pair of outflows, however, a reasonably strong disk wind component is essential for jet collimation. Strong flares may lead to a sudden change in mass flux by a factor two. We hypothesize that such flares may eventually trigger jet knots.Comment: 5 pages, 4 figures; proceedings from conference: Protostellar Jets in Context, held in Rhodes, July 7-12, 200
    corecore