400 research outputs found

    Shedding lights on human values: an approach to engage families with energy conservation

    Get PDF
    Changing behaviour related to energy conservation is not an emotionally neutral task. People have to deal with individual and group interests, contextual constraints, eventually trading-off between their values and effective actions in terms of savings. This paper presents a set of dynamics and artefacts for families to raise and share their energy awareness, and transform it into sustainable behaviour. This method based on human values was applied with 7 families to identify critical factors that must be in play when promoting energy conservation within a social group. Preliminary results confirmed that bringing families’ values into discussion and establishing shared commitments and responsibilities are promising approaches for technology design with the purpose to raise awareness collectively and promote effective changes in behaviour towards protecting the natural environment

    Talking Climate Change via Social Media: Communication, Engagement and Behaviour

    Get PDF
    While individual behaviour change is considered a central strategy to mitigate climate change, public engagement is still limited. Aiming to raise awareness, and to promote behaviour change, governments and organisations are conducting multiple pro-environmental campaigns, particularly via social media. However, to the best of our knowledge, these campaigns are neither based on, nor do they take advantage of, the existing theories and studies of behaviour change, to better target and inform users. In this paper we propose an approach for analysing user behaviour towards climate change based on the 5 Doors Theory of behaviour change. Our approach automatically identifies five behavioural stages in which users are based on their social media contributions. This approach has been applied to analyse the online behaviour of participants of the Earth Hour 2015 and COP21 Twitter movements. Results of our analysis are used to provide guidelines on how to improve communication via these campaigns

    Extensive tRNA gene changes in synthetic Brassica napus

    Get PDF
    Allopolyploidization, where two species come together to form a new species, plays a major role in speciation and genome evolution. Transfer RNAs (abbreviated tRNA) are typically 73-94 nucleotides in length, and are indispensable in protein synthesis, transferring amino acids to the cell protein synthesis machinery (ribosome). To date, the regularity and function of tRNA gene sequence variation during the process of allopolyploidization have not been well understood. In this study, the inter-tRNA gene corresponding to tRNA amplification polymorphism method was used to detect changes in tRNA gene sequences in the progeny of interspecific hybrids between Brassica rapa and B. oleracea, mimicking the original B. napus (canola) species formation event. Cluster analysis showed that tRNA gene variation during allopolyploidization did not appear to have a genotypic basis. Significant variation occurred in the early generations of synthetic B. napus (F and F generations), but fewer alterations were observed in the later generation (F). The variation-prone tRNA genes tended to be located in AT-rich regions. BlastN analysis of novel tRNA gene variants against a Brassica genome sequence database showed that the variation of these tRNA-gene-associated sequences in allopolyploidization might result in variation of gene structure and function, e.g., metabolic process and transport

    Magnitude of urban heat islands largely explained by climate and population

    Get PDF
    Urban heat islands (UHIs) exacerbate the risk of heat-related mortality associated with global climate change. The intensity of UHIs varies with population size and mean annual precipitation, but a unifying explanation for this variation is lacking, and there are no geographically targeted guidelines for heat mitigation. Here we analyse summertime differences between urban and rural surface temperatures (ΔTs) worldwide and find a nonlinear increase in ΔTs with precipitation that is controlled by water or energy limitations on evapotranspiration and that modulates the scaling of ΔTs with city size. We introduce a coarse-grained model that links population, background climate, and UHI intensity, and show that urban–rural differences in evapotranspiration and convection efficiency are the main determinants of warming. The direct implication of these nonlinearities is that mitigation strategies aimed at increasing green cover and albedo are more efficient in dry regions, whereas the challenge of cooling tropical cities will require innovative solutions

    Tree effects on urban microclimate: diurnal, seasonal, and climatic temperature differences explained by separating radiation, evapotranspiration, and roughness effects

    Get PDF
    Increasing urban tree cover is an often proposed mitigation strategy against urban heat as trees are expected to cool cities through evapotranspiration and shade provision. However, trees also modify wind flow and urban aerodynamic roughness, which can potentially limit heat dissipation. Existing studies show a varying cooling potential of urban trees in different climates and times of the day. These differences are so far not systematically explained as partitioning the individual tree effects is challenging and impossible through observations alone. Here, we conduct numerical experiments removing and adding radiation, evapotranspiration, and aerodynamic roughness effects caused by urban trees using a mechanistic urban ecohydrological model. Simulations are presented for four cities in different climates (Phoenix, Singapore, Melbourne, Zurich) considering the seasonal and diurnal cycles of air and surface temperatures. Results show that evapotranspiration of well-watered trees alone can decrease local 2 m air temperature at maximum by 3.1 – 5.8 °C in the four climates during summer. Further cooling is prevented by stomatal closure at peak temperatures as high vapour pressure deficits limit transpiration. While shading reduces surface temperatures, the interaction of a non-transpiring tree with radiation can increase 2 m air temperature by up to 1.6 – 2.1 °C in certain hours of the day at local scale, thus partially counteracting the evapotranspirative cooling effect. Furthermore, in the analysed scenarios, which do not account for tree wind blockage effects, trees lead to a decrease in urban roughness, which inhibits turbulent energy exchange and increases air temperature during daytime. At night, single tree effects are variable likely due to differences in atmospheric stability within the urban canyon. These results explain reported diurnal, seasonal and climatic differences in the cooling effects of urban trees, and can guide future field campaigns, planning strategies, and species selection aimed at improving local microclimate using urban greenery

    A qualitative study of enablers and barriers influencing the incorporation of social accountability values into organisational culture: a perspective from two medical schools

    Get PDF
    Background: Definitions of social accountability describe the obligation of medical schools to direct education, research and service activities towards addressing the priority health concerns of the population they serve. While such statements give some direction as to how the goal might be reached, it does not identify what factors might facilitate or hinder its achievement. This study set out to identify and explore enablers and barriers influencing the incorporation of social accountability values into medical schools. Methods: Semi structured interviews of fourteen senior staff in Bar Ilan and Leeds medical schools were undertaken following a literature review. Participants were recruited by purposive sampling in order to identify factors perceived to play a part in the workings of each institution. Results: Academic prestige was seen as a key barrier that was dependent on research priorities and student selection. The role of champions was considered to be vital to tackle staff perceptions and facilitate progress. Including practical community experience for students was felt to be a relevant way in which the curriculum could be designed through engagement with local partners. Conclusions: Successful adoption of social accountability values requires addressing concerns around potential negative impacts on academic prestige and standards. Identifying and supporting credible social accountability champions to disseminate the values throughout research and education departments in medical and other faculties is also necessary, including mapping onto existing work streams and research agendas. Demonstrating the contribution the institution can make to local health improvement and regional development by a consideration of its economic footprint may also be valuable

    Potensi pengembangan bahasa Indonesia menjadi bahasa internasional

    Get PDF
    Research on development potential of language Indonesia became the international language through teaching, this BIPA exposed about the average amount of students and his enthusiasm in the 23 country targets. We intend it to find out which countries have a great interest in this amount of students seen from the BIPA to be adjusted to the number of teachers who will be sent to the target country. The existence of the average amount of students can also known to target countries with a population of students which is so that the future can be PPSDK to restrict the policy directions of teachers who will be sent to these countries as the form of effectiveness and efficiency. Results of the study showed that Thailand, Myanmar, New Guinea, Australia, and East Timor is five countries with the potential and the average highest BIPA student

    Calculation of critical loads for cadmium, lead and mercury; background document to a mapping manual on critical loads of cadmium, lead and mercury

    Get PDF
    This report on heavy metals provides up-to-date methodologies to derive critical loads for the heavy metals cadmium (Cd), lead (Pb) and mercury (Hg) for both terrestrial and aquatic ecosystems. It presents background information to a Manual on Critical Loads for those metals. Focus is given to the methodologies and critical limits that have to be used to derive critical loads can be derived for Cd, Pb and Hg in view of : (i) ecotoxicological effects for either terrestrial or aquatic ecosystems.and (ii) human health effects for either terrestrial or aquatic ecosystems. For Hg, a separate approach is described to estimate critical levels in precipitation in view of human health effects due to the consumption of fish. The limitations and uncertainties of the approach are discussed including: (i) the uncertainties and particularities of the steady-state models used and (ii) the reliability of the approaches that are applied to derive critical limits for critical total dissolved metal concentrations in soil solution and surface wate

    Impact of soil properties on critical concentrations of cadmium, lead, copper, zinc and mercury in soil and soil solution in view of ecotoxicological effects

    Get PDF
    Concern about the input of metals to terrestrial ecosystems is related to (i) the ecotoxicological impact on soil organisms and plants (Bringmark et al. 1998; Palmborg et al. 1998) and also on aquatic organisms resulting from runoff to surface water and (ii) the uptake via food chains into animal tissues and products, which may result in health effects on animals and humans (Clark 1989). Effects on soil organisms, including microorganisms/macrofungi and soil fauna, such as nematodes and earthworms, are reduced species diversity, abundance, and biomass and changes in microbe-mediated processes (Bengtsson and Tranvik 1989; Giller et al. 1998; Vig et al. 2003). Effects on vascular plants include reduced development and growth of roots and shoots, elevated concentrations of starch and total sugar, decreased nutrient contents in foliar tissues, and decreased enzymatic activity (Prasad 1995; Das et al. 1997). A review of these phytotoxic effects is given by Balsberg-PĂĄhlsson (1989). Effects on aquatic organisms, including algae, Crustacea, and fish, include effects on gill function (Sola et al. 1995), nervous systems (Baatrup 1991), and growth and reproduction rates (Mance 1987). Environmental quality standards or critical limits, often also denoted as Predicted No Effect Concentrations, or PNECs, for metals in soils and surface waters related to those effects serve as a guide in the environmental risk assessment process for those substances
    • …
    corecore