325 research outputs found

    Review of Politics and Awe in Rudyard Kipling\u27s Fiction

    Get PDF

    Reluctant Cosmopolitanism in Dickens\u27s Great Expectations

    Get PDF

    Passing and the Modern Persona in Kipling\u27s Ethnographer Fiction

    Get PDF

    Multiscale Soil Investigations: Physical Concepts And Mathematical Techniques

    Get PDF
    Soil variability has often been considered to be composed of “functional” (explained) variations plus random fl uctuations or noise. However, the distinction between these two components is scale dependent because increasing the scale of observation almost always reveals structure in the noise (Burrough, 1983). Soils can be seen as the result of spatial variation operating over several scales, indicating that factors infl uencing spatial variability differ with scale. Th is observation points to variability as a key soil attribute that should be studied

    Use of near infrared reflectance spectroscopy to predict nitrogen uptake by winter wheat within fields with high variability in organic matter

    Get PDF
    In this study, the ability to predict N-uptake in winter wheat crops using NIR-spectroscopy on soil samples was evaluated. Soil samples were taken in unfertilized plots in one winter wheat field during three years (1997-1999) and in another winter wheat field nearby in one year (2000). Soil samples were analyzed for organic C content and their NIR-spectra. N-uptake was measured as total N-content in aboveground plant materials at harvest. Models calibrated to predict N-uptake were internally cross validated and validated across years and across fields. Cross-validated calibrations predicted N-uptake with an average error of 12.1 to 15.4 kg N ha-1. The standard deviation divided by this error (RPD) ranged between 1.9 and 2.5. In comparison, the corresponding calibrations based on organic C alone had an error from 11.7 to 28.2 kg N ha-1 and RPDs from 1.3 to 2.5. In three of four annual calibrations within a field, the NIR-based calibrations worked better than the organic C based calibrations. The prediction of N-uptake across years, but within a field, worked slightly better with an organic C based calibration than with a NIR based one, RPD = 1.9 and 1.7 respectively. Across fields, the corresponding difference was large in favour of the NIR-calibration, RPD = 2.5 for the NIR-calibration and 1.5 for the organic C calibration. It was concluded that NIR-spectroscopy integrates information about organic C with other relevant soil components and therefore has a good potential to predict complex functions of soils such as N-mineralization. A relatively good agreement of spectral relationships to parameters related to the N-mineralization of datasets across the world suggests that more general models can be calibrated

    Using homosoils to enrich sparse soil data infrastructure: an example from Mali

    Get PDF
    Many areas in the world suffer from relatively sparse soil data availability. This results in inefficient implementation of soil-related studies and inadequate recommendations for improving soil management strategies. Commonly, this problem is tackled by collecting new soil data which are used to update legacy soil surveys. New soil data collection, however, is usually costly. In this paper, we demonstrate how to find homosoils with the objective of obtaining new soil data for a study area. Homosoils are soils that can be geographically distant but share similar soil-forming factors. We cluster the study area into five areas, and identify a homosoil to each area using distance metrics calculated in the character space spanned by the environmental covariates. In a case study in Mali, we found that large areas in India, Australia and America have similar soil-forming factors to the African Sahelian zone. We collected available soil data for these areas from the WoSIS database. Statistical analysis on the relationship between the homosoils corresponding to different areas of Mali and tree soil properties (clay, sand, pH) displayed the unique variability captured by homosoils. The homosoils could explain 8% of the variation found in the soil datasets. There was a strong association between pH and homosoils corresponding to the semi-arid conditions and sedimentary parent material of Mali, whereas homosoils corresponding to other areas of Mali showed moderate association either with clay or sand. The location and spread of the group centroids were statistically significantly different between depth-specific homosoils for the three soil properties. The approach developed in this paper shows the opportunity for identifying areas in the world with similar soils to populate areas with relatively low soil data density. The concept of homosoils is promising and we envision future applications such as transfer of soil models and agronomic experimental results between areas

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition
    corecore