18 research outputs found

    Knowledge translation in Iranian universities: Need for serious interventions

    Get PDF
    Background: The aim of this study was to assess the status of knowledge translation (KT) in Iranian medical science universities in order to assess the strengths and weaknesses of the most important organizations responsible for producing knowledge in the country.Methods: The KT activities were assessed qualitatively and quantitatively in nine universities using the Self-Assessment Tool for Research Institutes.Results: The strengths and weaknesses of universities were determined using seven main themes: priority setting; research quality and timeliness; researchers' KT capacities; interaction with research users; the facilities and prerequisites of KT; the processes and regulations supporting KT; and promoting and evaluating the use of evidence.The quantitative and qualitative results showed that the Iranian universities did not have an appropriate context for KT. There were significant shortcomings in supportive regulations, facilities for KT activities, and the level of interaction between the researchers and research users.Conclusions: The shortcomings in KT were mostly in the area of stewardship and policymaking (macro level), followed by planning and implementation at the universities. In order to strengthen KT in Iran, it should occupy a prominent and focused role in the strategies of the country's health research system. © 2013 Gholami et al.; licensee BioMed Central Ltd

    Repair of Spinal Cord Injury (SCI) Using Bone Marrow Stromal Cell Transfected with Adenoviral Vector Expressing Glial derived Neurotropic Factor (GDNF) in a Rat SCI Model

    No full text
    Back ground  Subsequent to spinal cord injury many pathological changes may occur that could lead to inappropriate environment for repair. The Most important of such changes is the death of neurons. Exogenous administration of growth factors that modulate neuronal survival, synaptic plasticity, and neurotransmission has been proposed as a potential therapeutic treatment for SCI. Among these growth factors, GDNF is a peptide with pleiotropic survival and growth-promoting effects on neurons. In addition, GDNF induces the growth of motor and sensory axons and inhibits neuronal apoptosis. Adult stem cells may provide new strategies to treat SCI. Among various types of candidate stem cells, bone marrow stromal cells (BMSC) are promising because they have shown potential to neuronal differentiation and repair in damaged spinal cord. In this study, we aimed to improve results of treatment using combination of BMSC and GDNF features. Methods: Rats were divided randomly into four groups of six. Spinal cord injury was then performed under general anesthesia using the weight dropping method. The BMSCs were injected on 3th day of post-spinal cord injury. Group one included rats receiving normal saline, group two received BMSC, group three received BMSC infected with adenoviruses encoding the beta-galactosidase gene, and group four received BMSC infected with adenoviruses encoding the GDNF gene. A Basso, Beattie and Bresnahan (BBB) score test was performed for a period of four weeks. Two weeks before the end of BBB, biotin dextran amine was injected intracerebrally followed by tissue staining at the end of the fourth week. Results: There was a significant difference in BBB scores between groups one and four (
    corecore