28,799 research outputs found
Data Provenance and Management in Radio Astronomy: A Stream Computing Approach
New approaches for data provenance and data management (DPDM) are required
for mega science projects like the Square Kilometer Array, characterized by
extremely large data volume and intense data rates, therefore demanding
innovative and highly efficient computational paradigms. In this context, we
explore a stream-computing approach with the emphasis on the use of
accelerators. In particular, we make use of a new generation of high
performance stream-based parallelization middleware known as InfoSphere
Streams. Its viability for managing and ensuring interoperability and integrity
of signal processing data pipelines is demonstrated in radio astronomy. IBM
InfoSphere Streams embraces the stream-computing paradigm. It is a shift from
conventional data mining techniques (involving analysis of existing data from
databases) towards real-time analytic processing. We discuss using InfoSphere
Streams for effective DPDM in radio astronomy and propose a way in which
InfoSphere Streams can be utilized for large antennae arrays. We present a
case-study: the InfoSphere Streams implementation of an autocorrelating
spectrometer, and using this example we discuss the advantages of the
stream-computing approach and the utilization of hardware accelerators
Novel CCII-based Field Programmable Analog Array and its Application to a Sixth-Order Butterworth LPF
In this paper, a field programmable analog array (FPAA) is proposed. The proposed FPAA consists of seven configurable analog blocks (CABs) arranged in a hexagonal lattice such that the CABs are directly connected to each other. This structure improves the overall frequency response of the chip by decreasing the parasitic capacitances in the signal path. The CABS of the FPAA is based on a novel fully differential digitally programmable current conveyor (DPCCII). The programmability of the DPCCII is achieved using digitally controlled three-bit MOS ladder current division network. No extra biasing circuit is required to generate specific analog control voltage signals. The DPCCII has constant standby power consumption, offset voltage, bandwidth and harmonic distortions over all its programming range. A sixth-order Butterworth tunable LPF suitable for WLAN/WiMAX receivers is realized on the proposed FPAA. The filter power consumption is 5.4mW from 1V supply; it’s cutoff frequency is tuned from 5.2 MHz to 16.9 MHz. All the circuits are realized using 90nm CMOS technology from TSMC. All simulations are carried out using Cadence
Utilising semantic technologies for decision support in dementia care
The main objective of this work is to discuss our experience in utilising semantic technologies for building decision support in Dementia care systems that are based on the non-intrusive on the non-intrusive monitoring of the patient’s behaviour. Our approach adopts context-aware modelling of the patient’s condition to facilitate the analysis of the patient’s behaviour within the inhabited environment (movement and room occupancy patterns, use of equipment, etc.) with reference to the semantic knowledge about the patient’s condition (history of present of illness, dependable behaviour patterns, etc.). The reported work especially focuses on the critical role of the semantic reasoning engine in inferring medical advice, and by means of practical experimentation and critical analysis suggests important findings related to the methodology of deploying the appropriate semantic rules systems, and the dynamics of the efficient utilisation of complex event processing technology in order to the meet the requirements of decision support for remote healthcare systems
Model Prediction-Based Approach to Fault Tolerant Control with Applications
Abstract— Fault-tolerant control (FTC) is an integral component in industrial processes as it enables the system to continue robust operation under some conditions. In this paper, an FTC scheme is proposed for interconnected systems within an integrated design framework to yield a timely monitoring and detection of fault and reconfiguring the controller according to those faults. The unscented Kalman filter (UKF)-based fault detection and diagnosis system is initially run on the main plant and parameter estimation is being done for the local faults. This critical information\ud
is shared through information fusion to the main system where the whole system is being decentralized using the overlapping decomposition technique. Using this parameter estimates of decentralized subsystems, a model predictive control (MPC) adjusts its parameters according to the\ud
fault scenarios thereby striving to maintain the stability of the system. Experimental results on interconnected continuous time stirred tank reactors (CSTR) with recycle and quadruple tank system indicate that the proposed method is capable to correctly identify various faults, and then controlling the system under some conditions
Real-time speech encoding based on Code-Excited Linear Prediction (CELP)
This paper reports on the work proceeding with regard to the development of a real-time voice codec for the terrestrial and satellite mobile radio environments. The codec is based on a complexity reduced version of code-excited linear prediction (CELP). The codebook search complexity was reduced to only 0.5 million floating point operations per second (MFLOPS) while maintaining excellent speech quality. Novel methods to quantize the residual and the long and short term model filters are presented
Some Plane Symmetric Inhomogeneous Cosmological Models in the Scalar-Tensor Theory of Gravitation
The present study deals with the inhomogeneous plane symmetric models in
scalar - tensor theory of gravitation. We used symmetry group analysis method
to solve the field equations analytically. A new class of similarity solutions
have been obtained by considering the inhomogeneous nature of metric potential.
The physical behavior and geometrical aspects of the derived models are also
discussed.Comment: 12 pages, 1 figure
- …
