171 research outputs found

    The {\alpha}-Decay Chains of the 287,288115^{287, 288}115 Isotopes using Relativistic Mean Field Theory

    Full text link
    We study the binding energy, root-mean-square radius and quadrupole deformation parameter for the synthesized superheavy element Z = 115, within the formalism of relativistic mean field theory. The calculation is dones for various isotopes of Z = 115 element, starting from A = 272 to A = 292. A systematic comparison between the binding energies and experimental data is made.The calculated binding energies are in good agreement with experimental result. The results show the prolate deformation for the ground state of these nuclei. The most stable isotope is found to be 282115 nucleus (N = 167) in the isotopic chain. We have also studied Q{\alpha} and T{\alpha} for the {\alpha}-decay chains of 287,288^{287, 288}115.Comment: 12 Pages 6 Figures 3 Table

    A short survey on fault diagnosis in wireless sensor networks

    Get PDF
    Fault diagnosis is one of the most important and demand- able issues of the network. It makes the networks reliable and robust to operate in the normal way to handle almost all types of faults or failures. Additionally, it helps sensor nodes to work smoothly and efficiently till the end of their lifetime. This short survey paper not only presents a clear picture of the recent proposed techniques, but also draws comparisons and contrasts among them to diagnose the potential faults. In addition, it proposes some potential future-work directions which would lead to open new research directions in the field of fault diagnosis

    Nanogap structures for molecular nanoelectronics

    Get PDF
    This study is focused on the realization of nanodevices for nano and molecular electronics, based on molecular interactions in a metal-molecule-metal (M-M-M) structure. In an M-M-M system, the electronic function is a property of the structure and can be characterized through I/V measurements. The contact between the metals and the molecule was obtained by gold nanogaps (with a dimension of less than 10 nm), produced with the electromigration technique. The nanogap fabrication was controlled by a custom hardware and the related software system. The studies were carried out through experiments and simulations of organic molecules, in particular oligothiophenes

    The EMT transcription factor ZEB1 governs a fitness-promoting but vulnerable DNA replication stress response

    Get PDF
    The DNA damage response (DDR) and epithelial-to-mesenchymal transition (EMT) are two crucial cellular programs in cancer biology. While the DDR orchestrates cell cycle progression, DNA repair and cell death, EMT promotes invasiveness, cellular plasticity and intratumor heterogeneity. Therapeutic targeting of EMT transcription factors, such as ZEB1, remains challenging, but tumor-promoting DDR alterations elicit specific vulnerabilities. Using multi-omics, inhibitors and high-content microscopy, we discover a chemoresistant ZEB1 high expressing sub-population (ZEB1hi) with co-rewired cell cycle progression and proficient DDR across tumor entities. ZEB1 stimulates accelerated S-phase entry via CDK6, inflicting endogenous DNA replication stress. However, DDR buildups involving constitutive MRE11-dependent fork resection allow homeostatic cycling and enrichment of ZEB1hi cells during TGFβ-induced EMT and chemotherapy. Thus, ZEB1 promotes G1/S transition to launch a progressive DDR benefitting stress tolerance, which concurrently manifests a targetable vulnerability in chemoresistant ZEB1hi cells. Our study thus highlights the translationally relevant intercept of the DDR and EMT

    Microneedles: A New Frontier in Nanomedicine Delivery

    Get PDF
    This review aims to concisely chart the development of two individual research fields, namely nanomedicines, with specific emphasis on nanoparticles (NP) and microparticles (MP), and microneedle (MN) technologies, which have, in the recent past, been exploited in combinatorial approaches for the efficient delivery of a variety of medicinal agents across the skin. This is an emerging and exciting area of pharmaceutical sciences research within the remit of transdermal drug delivery and as such will undoubtedly continue to grow with the emergence of new formulation and fabrication methodologies for particles and MN. Firstly, the fundamental aspects of skin architecture and structure are outlined, with particular reference to their influence on NP and MP penetration. Following on from this, a variety of different particles are described, as are the diverse range of MN modalities currently under development. The review concludes by highlighting some of the novel delivery systems which have been described in the literature exploiting these two approaches and directs the reader towards emerging uses for nanomedicines in combination with MN

    Poly-lactic acid nanoparticles (PLA-NP) promote physiological modifications in lung epithelial cells and are internalized by clathrin-coated pits and lipid rafts

    Get PDF
    BackgroundPoly-lactic acid nanoparticles (PLA-NP) are a type of polymeric NP, frequently used as nanomedicines, which have advantages over metallic NP such as the ability to maintain therapeutic drug levels for sustained periods of time. Despite PLA-NP being considered biocompatible, data concerning alterations in cellular physiology are scarce.MethodsWe conducted an extensive evaluation of PLA-NP biocompatibility in human lung epithelial A549 cells using high throughput screening and more complex methodologies. These included measurements of cytotoxicity, cell viability, immunomodulatory potential, and effects upon the cells’ proteome. We used non- and green-fluorescent PLA-NP with 63 and 66 nm diameters, respectively. Cells were exposed with concentrations of 2, 20, 100 and 200 µg/mL, for 24, 48 and 72 h, in most experiments. Moreover, possible endocytic mechanisms of internalization of PLA-NP were investigated, such as those involving caveolae, lipid rafts, macropinocytosis and clathrin-coated pits.ResultsCell viability and proliferation were not altered in response to PLA-NP. Multiplex analysis of secreted mediators revealed a low-level reduction of IL-12p70 and vascular epidermal growth factor (VEGF) in response to PLA-NP, while all other mediators assessed were unaffected. However, changes to the cells’ proteome were observed in response to PLA-NP, and, additionally, the cellular stress marker miR155 was found to reduce. In dual exposures of staurosporine (STS) with PLA-NP, PLA-NP enhanced susceptibility to STS-induced cell death. Finally, PLA-NP were rapidly internalized in association with clathrin-coated pits, and, to a lesser extent, with lipid rafts.ConclusionsThese data demonstrate that PLA-NP are internalized and, in general, tolerated by A549 cells, with no cytotoxicity and no secretion of pro-inflammatory mediators. However, PLA-NP exposure may induce modification of biological functions of A549 cells, which should be considered when designing drug delivery systems. Moreover, the pathways of PLA-NP internalization we detected could contribute to the improvement of selective uptake strategies
    corecore