172 research outputs found

    A Critical Review on the Development of Ionic Liquids-Based Nanofluids as Heat Transfer Fluids for Solar Thermal Energy

    Get PDF
    In recent years, solar thermal energy (STE) has attracted energy researchers because of its higher efficacy compared to the photovoltaic solar cell. STE is one of the forms of solar energy whereby heat is transferred via a secondary medium called heat transfer fluids (HTFs). Therefore, the overall performance of STE depends on the thermophysical properties and thermal performance of the HTFs. Traditional HTFs suffer from low decomposition temperature, high melting point, and higher vapor pressure. To overcome these limitations, researchers have recently begun working on new HTFs for STE. Ionic liquids (ILs) are considered as a potential candidate for the next generation of HTFs because of their enhanced thermophysical properties, such as thermal stability at high temperature, insignificant vapor pressure, and high ionic conductivity. In addition, thermophysical properties and thermal performance of ILs can be further enhanced by dispersing nanoparticles, which is one of the emerging research interests to improve the efficiency of the solar thermal system. This paper summarizes the recent study of ILs-based nanofluids as HTFs. These summaries are divided into two sections (i) thermophysical properties studies, such as density, viscosity, thermal conductivity, and heat capacity, and (ii) thermal performance studies such as natural convection and forced convection. Synthesis of ILs-based nanofluids and thermophysical properties measurement techniques are also discussed. Based on these state-of-the-art summaries, we offer recommendations for potential future research direction for ILs-based nanofluids

    Mechanical properties of longitudinal basalt/woven-glass-fiber-reinforced unsaturated polyester-resin hybrid composites

    Get PDF
    This work represents a study to investigate the mechanical properties of longitudinal basalt/woven-glass-fiber-reinforced unsaturated polyester-resin hybrid composites. The hybridization of basalt and glass fiber enhanced the mechanical properties of hybrid composites. The unsaturated polyester resin (UP), basalt (B) and glass fibers (GF) were fabricated using the hand lay-up method in six formulations (UP, GF, B7.5/G22.5, B15/G15, B22.5/G7.5 and B) to produce the composites, respectively. This study showed that the addition of basalt to glass-fiber-reinforced unsaturated polyester resin increased its density, tensile and flexural properties. The tensile strength of the B22.5/G7.5 hybrid composites increased by 213.92 MPa compared to neat UP, which was 8.14 MPa. Scanning electron microscopy analysis was used to observe the fracture mode and fiber pullout of the hybrid composites

    Software optimization of vision-based around view monitoring system on embedded platform

    Get PDF
    Image processing algorithm requires high computational power. Optimizing the algorithm to be run on an embedded platform is very critical as the platform provides limited computational resources. This research focused on optimizing and implementing a vision-based Around View Monitoring (AVM) system running on two embedded boards of Cortex-A7 quad and Cortex-A15 quad-core, and desktop platform of Intel i7 core. This paper presented a study on several techniques of software optimization that is removing code redundancy and multi-threading. The two methods improve the total processing time of the AVM system by 45% on ARM Cortex-A15 and 47% on ARM Cortex-A7

    Comparing Belief Propagation and Graph Cuts for Novelty Detection

    No full text
    corecore