501 research outputs found
Efficient amplification of a single-mode laser diode via photorefractive beam combination using an injection locked laser diode array pump
Powers in excess of 100mW have been obtained in a near-diffraction-limited, single-mode laser-diode output by photorefractive two-beam coupling in BaTiO3, using an injection-locked 1W diode-laser array as the pump source. Signal gains of as much as 8.1 are obtained, corresponding to pump transfer efficiencies of 49%. Calculations suggest that powers as high as 225mW should be obtainable, given suitable antireflection-coated optics
Estimates of metabolic rate and major constituents of metabolic demand in fishes under field conditions: Methods, proxies, and new perspectives
Metabolic costs are central to individual energy budgets, making estimates of metabolic rate vital to understanding how an organism interacts with its environment as well as the role of species in their ecosystem. Despite the ecological and commercial importance of fishes, there are currently no widely adopted means of measuring field metabolic rate in fishes. The lack of recognized methods is in part due to the logistical difficulties of measuring metabolic rates in free swimming fishes. However, further development and refinement of techniques applicable for field-based studies on free swimming animals would greatly enhance the capacity to study fish under environmentally relevant conditions. In an effort to foster discussion in this area, from field ecologists to biochemists alike, we review aspects of energy metabolism and give details on approaches that have been used to estimate energetic parameters in fishes. In some cases, the techniques have been applied to field conditions; while in others, the methods have been primarily used on laboratory held fishes but should be applicable, with validation, to fishes in their natural environment. Limitations, experimental considerations and caveats of these measurements and the study of metabolism in wild fishes in general are also discussed. Potential novel approaches to FMR estimates are also presented for consideration. The innovation of methods for measuring field metabolic rate in free-ranging wild fish would revolutionize the study of physiological ecology
Coordination Implications of Software Coupling in Open Source Projects
The effect of software coupling on the quality of software has been studied quite widely since the seminal paper on software modularity by Parnas [1]. However, the effect of the increase in software coupling on the coordination of the developers has not been researched as much. In commercial software development environments there normally are coordination mechanisms in place to manage the coordination requirements due to software dependencies. But, in the case of Open Source software such coordination mechanisms are harder to implement, as the developers tend to rely solely on electronic means of communication. Hence, an understanding of the changing coordination requirements is essential to the management of an Open Source project. In this paper we study the effect of changes in software coupling on the coordination requirements in a case study of a popular Open Source project called JBoss
Effect of Applied Magnetic Field on Shock Boundary Layer Interaction
The governing magneto-hydrodynamic (MHD) equations contain classical fluid dynamics equations along with coupled Maxwell’s magnetic induction equations. These equations model both advection and diffusion effects of electromagnetic field. However, available literature indicates that some previous investigations neglect the diffusion of magnetic field and considered only ideal MHD equations for modeling a typical MHD problem. In this work, the effects of magnetic field diffusion term also known as viscous magnetic term have been investigated over flow structure. Low magnetic Reynolds number approximation and ideal full MHD set of equations have been considered and solved using a four-stage modified Runge-Kutta scheme augmented with the Davis-Yee symmetric Total Variation Diminishing model in post-processing stage. Results obtained from viscous and ideal flow computations without applied magnetic field have been found in close agreement. However, results obtained from viscous MHD and ideal MHD computations substantially disagree from each other which indicate that the effect of magnetic diffusion term on overall flow structure is significant
Characterization of a sodium dodecyl sulphate-degrading Pseudomonas sp. strain DRY15 from Antarctic soil
A bacterium capable of biodegrading surfactant sodium dodecyl sulphate (SDS) was isolated from Antarctic soil. The isolate was tentatively identified as Pseudomonas sp. strain DRY15 based on carbon utilization profiles using Biolog GN plates and partial 16S rDNA molecular phylogeny. Growth characteristic studies showed that the bacterium grew optimally at 10 degrees C, 7.25 pH, 1 g l(-1) SDS as a sole carbon source and 2 g l(-1) ammonium sulphate as nitrogen source. Growth was completely inhibited at 5 g l(-1) SDS. At a tolerable initial concentration of 2 g l(-1), approximately 90% of SDS was degraded after an incubation period of eight days. The best growth kinetic model to fit experimental data was the Haldane model of substrate inhibition with a correlation coefficient value of 0.97. The maximum growth rate was 0.372 hr(-1) while the saturation constant or half velocity constant (Ks) and inhibition constant (Ki), were 0.094% and 11.212 % SDS, respectively. Other detergent tested as carbon sources at 1 g l(-1) was Tergitol NP9, Tergitol 15S9, Witconol 2301 (methyl oleate), sodium dodecylbenzene sulfonate (SDBS), benzethonium chloride, and benzalkonium chloride showed Tergitol NP9, Tergitol 15S9, Witconol 2301 and the anionic SDBS supported growth with the highest growth exhibited by SDBS.Fil: Halmi, M. I. E.. University of Putra; MalasiaFil: Hussin, W. S. W.. University of Putra; MalasiaFil: Aqlima, A.. University of Putra; MalasiaFil: Syed, M. A.. University of Putra; MalasiaFil: Ruberto, Lucas Adolfo Mauro. Ministerio de Relaciones Exteriores, Comercio Interno y Culto. Dirección Nacional del Antártico. Instituto Antártico Argentino; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: MacCormack, Walter P.. Ministerio de Relaciones Exteriores, Comercio Interno y Culto. Dirección Nacional del Antártico. Instituto Antártico Argentino; ArgentinaFil: Yukor, M. Y.. University of Putra; Malasi
Characterization of a sodium dodecyl sulphate-degrading Pseudomonas sp. strain DRY15 from Antarctic soil
A bacterium capable of biodegrading surfactant sodium dodecyl sulphate (SDS) was isolated from Antarctic soil. The isolate was tentatively identified as Pseudomonas sp. strain DRY15 based on carbon utilization profiles using Biolog GN plates and partial 16S rDNA molecular phylogeny. Growth characteristic studies showed that the bacterium grew optimally at 10 degrees C, 7.25 pH, 1 g l(-1) SDS as a sole carbon source and 2 g l(-1) ammonium sulphate as nitrogen source. Growth was completely inhibited at 5 g l(-1) SDS. At a tolerable initial concentration of 2 g l(-1), approximately 90% of SDS was degraded after an incubation period of eight days. The best growth kinetic model to fit experimental data was the Haldane model of substrate inhibition with a correlation coefficient value of 0.97. The maximum growth rate was 0.372 hr(-1) while the saturation constant or half velocity constant (Ks) and inhibition constant (Ki), were 0.094% and 11.212 % SDS, respectively. Other detergent tested as carbon sources at 1 g l(-1) was Tergitol NP9, Tergitol 15S9, Witconol 2301 (methyl oleate), sodium dodecylbenzene sulfonate (SDBS), benzethonium chloride, and benzalkonium chloride showed Tergitol NP9, Tergitol 15S9, Witconol 2301 and the anionic SDBS supported growth with the highest growth exhibited by SDBS
The power of modularity today: 20 years of “Design Rules”
In 2000, Carliss Baldwin and Kim Clark published “Design Rules: The Power of Modularity,” a book that introduced new ways of understanding and explaining the architecture of complex systems This Special Issue of Industrial and Corporate Change celebrates this seminal work, the research it has inspired, and the insights that these collective efforts have generated. In this introductory essay, we review the impact of “Design Rules” across numerous fields, including organization theory, competitive strategy, industry structure, and innovation management. We offer perspectives on key themes that emerge from contributions in this issue, including the alignment between organizational and technical designs (“mirroring”), the dynamics of industry evolution, and the role that individuals play in shaping and responding to system designs. We close by highlighting opportunities to apply the theory in Design Rules to new phenomena and puzzles that have emerged in the past 20 years
First order hyperbolic formalism for Numerical Relativity
The causal structure of Einstein's evolution equations is considered. We show
that in general they can be written as a first order system of balance laws for
any choice of slicing or shift. We also show how certain terms in the evolution
equations, that can lead to numerical inaccuracies, can be eliminated by using
the Hamiltonian constraint. Furthermore, we show that the entire system is
hyperbolic when the time coordinate is chosen in an invariant algebraic way,
and for any fixed choice of the shift. This is achieved by using the momentum
constraints in such as way that no additional space or time derivatives of the
equations need to be computed. The slicings that allow hyperbolicity in this
formulation belong to a large class, including harmonic, maximal, and many
others that have been commonly used in numerical relativity. We provide details
of some of the advanced numerical methods that this formulation of the
equations allows, and we also discuss certain advantages that a hyperbolic
formulation provides when treating boundary conditions.Comment: To appear in Phys. Rev.
- …