493 research outputs found

    The Axisymmetric Pulsar Magnetosphere

    Get PDF
    We present, for the first time, the structure of the axisymmetric force-free magnetosphere of an aligned rotating magnetic dipole, in the case in which there exists a sufficiently large charge density (whose origin we do not question) to satisfy the ideal MHD condition, E⋅B=0{\bf E\cdot B}=0, everywhere. The unique distribution of electric current along the open magnetic field lines which is required for the solution to be continuous and smooth is obtained numerically. With the geometry of the field lines thus determined we compute the dynamics of the associated MHD wind. The main result is that the relativistic outflow contained in the magnetosphere is not accelerated to the extremely relativistic energies required for the flow to generate gamma rays. We expect that our solution will be useful as the starting point for detailed studies of pulsar magnetospheres under more general conditions, namely when either the force-free and/or the ideal MHD condition E⋅B=0{\bf E\cdot B}=0 are not valid in the entire magnetosphere. Based on our solution, we consider that the most likely positions of such an occurrence are the polar cap, the crossings of the zero space charge surface by open field lines, and the return current boundary, but not the light cylinder.Comment: 15 pages AAS Latex, 5 postscript figure

    Magnetohydrodynamic jets from different magnetic field configurations

    Full text link
    Using axisymmetric MHD simulations we investigate how the overall jet formation is affected by a variation in the disk magnetic flux profile and/or the existence of a central stellar magnetosphere. Our simulations evolve from an initial, hydrostatic equilibrium state in a force-free magnetic field configuration. We find a unique relation between the collimation degree and the disk wind magnetization power law exponent. The collimation degree decreases for steeper disk magnetic field profiles. Highly collimated outflows resulting from a flat profile tend to be unsteady. We further consider a magnetic field superposed of a stellar dipole and a disk field in parallel or anti-parallel alignment. Both stellar and disk wind may evolve in a pair of outflows, however, a reasonably strong disk wind component is essential for jet collimation. Strong flares may lead to a sudden change in mass flux by a factor two. We hypothesize that such flares may eventually trigger jet knots.Comment: 5 pages, 4 figures; proceedings from conference: Protostellar Jets in Context, held in Rhodes, July 7-12, 200

    Ultra-Relativistic Magneto-Hydro-Dynamic Jets in the context of Gamma Ray Bursts

    Full text link
    We present a detailed numerical study of the dynamics and evolution of ultrarelativistic magnetohydrodynamic jets in the black hole-disk system under extreme magnetization conditions. We find that Lorentz factors of up to 3000 are achieved and derived a modifiedMichel scaling (Gamma ~ sigma) which allows for a wide variation in the flow Lorentz factor. Pending contamination induced by mass-entrainment, the linear Michel scaling links modulations in the ultrarelativistic wind to variations in mass accretion in the disk for a given magnetization. The jet is asymptotically dominated by the toroidal magnetic field allowing for efficient collimation. We discuss our solutions (jets) in the context of Gamma ray bursts and describe the relevant features such as the high variability in the Lorentz factor and how high collimation angles (~ 0-5 degrees), or cylindrical jets, can be achieved. We isolate a jet instability mechanism we refer to as the "bottle-neck" instability which essentially relies on a high magnetization and a recollimation of the magnetic flux surfaces. The instability occurs at large radii where any dissipation of the magnetic energy into radiation would in principle result in an optically thin emission.Comment: 31 pages, 6 figures. Submitted to ApJ. Higher Quality figures at http://www.capca.ucalgary.ca/paper

    Pain-relief learning in flies, rats, and man: basic research and applied perspectives

    No full text
    Memories relating to a painful, negative event are adaptive and can be stored for a lifetime to support preemptive avoidance, escape, or attack behavior. However, under unfavorable circumstances such memories can become overwhelmingly powerful. They may trigger excessively negative psychological states and uncontrollable avoidance of locations, objects, or social interactions. It is therefore obvious that any process to counteract such effects will be of value. In this context, we stress from a basic-research perspective that painful, negative events are "Janus-faced" in the sense that there are actually two aspects about them that are worth remembering: What made them happen and what made them cease. We review published findings from fruit flies, rats, and man showing that both aspects, respectively related to the onset and the offset of the negative event, induce distinct and oppositely valenced memories: Stimuli experienced before an electric shock acquire negative valence as they signal upcoming punishment, whereas stimuli experienced after an electric shock acquire positive valence because of their association with the relieving cessation of pain. We discuss how memories for such punishment-and relief-learning are organized, how this organization fits into the threat-imminence model of defensive behavior, and what perspectives these considerations offer for applied psychology in the context of trauma, panic, and nonsuicidal self-injury

    Locking of the Rotation of Disk-Accreting Magnetized Stars

    Full text link
    We investigate the rotational equilibrium state of a disk accreting magnetized stars using axisymmetric magnetohydrodynamic (MHD) simulations. In this ``locked'' state, the spin-up torque balances the spin-down torque so that the net average torque on the star is zero. We investigated two types of initial conditions, one with a relatively weak stellar magnetic field and a high coronal density, and the other with a stronger stellar field and a lower coronal density. We observed that for both initial conditions the rotation of the star is locked to the rotation of the disk. In the second case, the radial field lines carry significant angular momentum out of the star. However, this did not appreciably change the condition for locking of the rotation of the star. We find that in the equilibrium state the corotation radius rcor_{co} is related to the magnetospheric radius rAr_A as rco/rA≈1.2−1.3r_{co}/r_A\approx 1.2-1.3 for case (1) and rco/rA≈1.4−1.5r_{co}/r_A\approx 1.4-1.5 for case (2). We estimated periods of rotation in the equilibrium state for classical T Tauri stars, dwarf novae and X-ray millisecond pulsars.Comment: 10 pages, 9 figures. Accepted by ApJ, will appear in vol. 634, 2005 December

    Can Protostellar Jets Drive Supersonic Turbulence in Molecular Clouds?

    Full text link
    Jets and outflows from young stellar objects are proposed candidates to drive supersonic turbulence in molecular clouds. Here, we present the results from multi-dimensional jet simulations where we investigate in detail the energy and momentum deposition from jets into their surrounding environment and quantify the character of the excited turbulence with velocity probability density functions. Our study include jet--clump interaction, transient jets, and magnetised jets. We find that collimated supersonic jets do not excite supersonic motions far from the vicinity of the jet. Supersonic fluctuations are damped quickly and do not spread into the parent cloud. Instead subsonic, non-compressional modes occupy most of the excited volume. This is a generic feature which can not be fully circumvented by overdense jets or magnetic fields. Nevertheless, jets are able to leave strong imprints in their cloud structure and can disrupt dense clumps. Our results question the ability of collimated jets to sustain supersonic turbulence in molecular clouds.Comment: 33 pages, 18 figures, accepted by ApJ, version with high resolution figures at: http://www.ita.uni-heidelberg.de/~banerjee/publications/jet_paper.pd

    Aetiology of pneumonia following isolated closed head injury

    Get PDF
    AbstractPatients undergoing mechanical ventilation (MV) after an isolated closed head injury (ICHI) have often been found to develop hospital-acquired pneumonia (HAP) well before subjects who require MV for different reasons. In a prospective study of patients receiving MV after an ICHI, 38 subjects (out of 65 with clinically suspected HAP) had a bacteriological diagnosis established on the basis of correspondence between cultures made from bronchoalveolar lavage and protected specimen brush (with quantitative thresholds of 104 and 103 cfu ml−1, respectively). Patients were separated according to the time of onset of HAP, with 20 subjects who developed HAP within 4 days of the start of MV (early onset pneumonia, EOP) and 18 subjects who developed HAP after the fourth day (late onset pneumonia, LOP). In those who had LOP, an expected spectrum of organisms was found, with Gram-negatives (especially Pseudomonas sp.) accounting for the majority of isolates. However, in EOP cases, Gram-positive bacteria (especially Staphylococcus sp. and Streptococcus pneumoniae) were found to largely predominate (P = 0·0000026). This confirms the high incidence of staphylococcal pneumonia in neurosurgery patients, and also provides evidence that the vast majority of such staphylococcal pneumonia are EOP. Unlike most previous reports, the microbiological findings from the present study suggest that a cut-off point of 4 days successfully distinguishes between EOP and LOP. Since these two clinical entities differ significantly in terms of pathogenesis and aetiology, preventive measures and therapeutical protocols have to be tailored accordingly

    Global asymptotic solutions for relativistic MHD jets and winds

    Full text link
    We consider relativistic, stationary, axisymmetric, polytropic, unconfined, perfect MHD winds, assuming their five lagrangian first integrals to be known. The asymptotic structure consists of field-regions bordered by boundary layers along the polar axis and at null surfaces, such as the equatorial plane, which have the structure of charged column or sheet pinches supported by plasma or magnetic poloidal pressure. In each field-region cell, the proper current (defined here as the ratio of the asymptotic poloidal current to the asymptotic Lorentz factor) remains constant. Our solution is given in the form of matched asymptotic solutions separately valid outside and inside the boundary layers. An Hamilton-Jacobi equation, or equivalently a Grad-Shafranov equation, gives the asymptotic structure in the field-regions of winds which carry Poynting flux to infinity. An important consistency relation is found to exist between axial pressure, axial current and asymptotic Lorentz factor. We similarly derive WKB-type analytic solutions for winds which are kinetic-energy dominated at infinity and whose magnetic surfaces focus to paraboloids. The density on the axis in the polar boundary column is shown to slowly fall off as a negative power of the logarithm of the distance to the wind source. The geometry of magnetic surfaces in all parts of the asymptotic domain, including boundary layers, is explicitly deduced in terms of the first-integrals.Comment: 39 pages, 7 figures, accepted for publication in Ap

    The structure of black hole magnetospheres. I. Schwarzschild black holes

    Get PDF
    We introduce a multipolar scheme for describing the structure of stationary, axisymmetric, force-free black-hole magnetospheres in the ``3+1'' formalism. We focus here on Schwarzschild spacetime, giving a complete classification of the separable solutions of the stream equation. We show a transparent term-by-term analogy of our solutions with the familiar multipoles of flat-space electrodynamics. We discuss electrodynamic processes around disk-fed black holes in which our solutions find natural applications: (a) ``interior'' solutions in studies of the Blandford-Znajek process of extracting the hole's rotational energy, and of the formation of relativistic jets in active galactic nuclei and ``microquasars'', and, (b) ``exterior'' solutions in studies of accretion disk dynamos, disk-driven winds and jets. On the strength of existing numerical studies, we argue that the poloidal field structures found here are also expected to hold with good accuracy for rotating black holes, except for maximum possible rotation rates. We show that the closed-loop exterior solutions found here are not in contradiction with the Macdonald-Thorne theorem, since these solutions, which diverge logarithmically on the hole's horizon H\cal H, apply only to those regions which exclude H\cal H.Comment: 6 figures. Accepted for publication by MNRA

    Three-dimensional Simulations of Disk Accretion to an Inclined Dipole: I. Magnetospheric Flow at Different Theta

    Full text link
    We present results of fully three-dimensional MHD simulations of disk accretion to a rotating magnetized star with its dipole moment inclined at an angle Theta to the rotation axis of the disk. We observed that matter accretes from the disk to a star in two or several streams depending on Theta. Streams may precess around the star at small Theta. The inner regions of the disk are warped. The warping is due to the tendency of matter to co-rotate with inclined magnetosphere. The accreting matter brings positive angular momentum to the (slowly rotating) star tending to spin it up. The corresponding torque N_z depends only weakly on Theta. The angular momentum flux to the star is transported predominantly by the magnetic field; the matter component contributes < 1 % of the total flux. Results of simulations are important for understanding the nature of classical T Tauri stars, cataclysmic variables, and X-ray pulsars.Comment: 26 pages, 22 figures, LaTeX, macros: emulapj.sty, avi simulations are available at http://www.astro.cornell.edu/us-rus/inclined.ht
    • 

    corecore