123,064 research outputs found
The conductance of a multi-mode ballistic ring: beyond Landauer and Kubo
The Landauer conductance of a two terminal device equals to the number of
open modes in the weak scattering limit. What is the corresponding result if we
close the system into a ring? Is it still bounded by the number of open modes?
Or is it unbounded as in the semi-classical (Drude) analysis? It turns out that
the calculation of the mesoscopic conductance is similar to solving a
percolation problem. The "percolation" is in energy space rather than in real
space. The non-universal structures and the sparsity of the perturbation matrix
cannot be ignored.Comment: 7 pages, 8 figures, with the correct version of Figs.6-
The Effect of Non-tightness on Bayesian Estimation of PCFGs
Probabilistic context-free grammars have the unusual property of not always defining tight distributions (i.e., the sum of the âprobabilitiesâ of the trees the grammar generates can be less than one). This paper reviews how this non-tightness can arise and discusses its impact on Bayesian estimation of PCFGs. We begin by presenting the notion of âalmost everywhere tight grammars â and show that linear CFGs follow it. We then propose three different ways of reinterpreting non-tight PCFGs to make them tight, show that the Bayesian estimators in Johnson et al. (2007) are correct under one of them, and provide MCMC samplers for the other two. We conclude with a discussion of the impact of tightness empirically.
First order effects of production on the continuum theory of spherical electrostatic probes
First order effects of production on continuum theory of spherical Langmuir probes in infinite, homogeneous, slightly ionized, collision-dominated plasm
Recommended from our members
Visual attention in autism families: âunaffectedâ sibs share atypical frontal activation
Background: In addition to their more clinically evident abnormalities of social cognition, people with autism spectrum conditions (ASC) manifest perturbations of attention and sensory perception which may offer insights into the underlying neural abnormalities. Similar autistic traits in ASC relatives without a diagnosis suggest a continuity between clinically affected and unaffected family members
Asymptotic Methods for Metal Oxide Semiconductor Field Effect Transistor Modeling
The behavior of metal oxide semiconductor field effect transistors (MOSFETs) with small aspect ratio and large doping levels is analyzed using formal perturbation techniques. Specifically, the influence of interface layers in the potential on the averaged channel conductivity is closely examined. The interface and internal layers that occur in the potential are resolved in the limit of large doping using the method of matched asymptotic expansions. This approach, together with other asymptotic techniques, provides both a pointwise description of the state variables as well as lumped current-voltage relations that vary uniformly across the various bias regimes. These current-voltage relations are derived for a variable doping model respresenting a particular class of devices
Crustal deformation, the earthquake cycle, and models of viscoelastic flow in the asthenosphere
The crustal deformation patterns associated with the earthquake cycle can depend strongly on the rheological properties of subcrustal material. Substantial deviations from the simple patterns for a uniformly elastic earth are expected when viscoelastic flow of subcrustal material is considered. The detailed description of the deformation pattern and in particular the surface displacements, displacement rates, strains, and strain rates depend on the structure and geometry of the material near the seismogenic zone. The origin of some of these differences are resolved by analyzing several different linear viscoelastic models with a common finite element computational technique. The models involve strike-slip faulting and include a thin channel asthenosphere model, a model with a varying thickness lithosphere, and a model with a viscoelastic inclusion below the brittle slip plane. The calculations reveal that the surface deformation pattern is most sensitive to the rheology of the material that lies below the slip plane in a volume whose extent is a few times the fault depth. If this material is viscoelastic, the surface deformation pattern resembles that of an elastic layer lying over a viscoelastic half-space. When the thickness or breath of the viscoelastic material is less than a few times the fault depth, then the surface deformation pattern is altered and geodetic measurements are potentially useful for studying the details of subsurface geometry and structure. Distinguishing among the various models is best accomplished by making geodetic measurements not only near the fault but out to distances equal to several times the fault depth. This is where the model differences are greatest; these differences will be most readily detected shortly after an earthquake when viscoelastic effects are most pronounced
- âŠ