283 research outputs found

    Long-term impact on healthcare resource utilization of statin treatment, and its cost effectiveness in the primary prevention of cardiovascular disease: a record linkage study

    Get PDF
    Aims: To assess the impact on healthcare resource utilization, costs, and quality of life over 15 years from 5 years of statin use in men without a history of myocardial infarction in the West of Scotland Coronary Prevention Study (WOSCOPS).<p></p> Methods: Six thousand five hundred and ninety-five participants aged 45–54 years were randomized to 5 years treatment with pravastatin (40 mg) or placebo. Linkage to routinely collected health records extended follow-up for secondary healthcare resource utilization to 15 years. The following new results are reported: cause-specific first and recurrent cardiovascular hospital admissions including myocardial infarction, heart failure, stroke, coronary revascularization and angiography; non-cardiovascular hospitalization; days in hospital; quality-adjusted life years (QALYs); costs of pravastatin treatment, treatment safety monitoring, and hospital admissions.<p></p> Results: Five years treatment of 1000 patients with pravastatin (40 mg/day) saved the NHS Β£710 000 (P < 0.001), including the cost of pravastatin and lipid and safety monitoring, and gained 136 QALYs (P = 0.017) over the 15-year period. Benefits per 1000 subjects, attributable to prevention of cardiovascular events, included 163 fewer admissions and a saving of 1836 days in hospital, with fewer admissions for myocardial infarction, stroke, heart failure and coronary revascularization. There was no excess in non-cardiovascular admissions or costs (or in admissions associated with diabetes or its complications) and no evidence of heterogeneity of effect over sub-groups defined by baseline cardiovascular risk.<p></p> Conclusion: Five years' primary prevention treatment of middle-aged men with a statin significantly reduces healthcare resource utilization, is cost saving, and increases QALYs. Treatment of even younger, lower risk individuals is likely to be cost-effective.<p></p&gt

    Drosophila poly suggests a novel role for the Elongator complex in insulin receptor-target of rapamycin signalling

    Get PDF
    Multi-cellular organisms need to successfully link cell growth and metabolism to environmental cues during development. Insulin receptor–target of rapamycin (InR–TOR) signalling is a highly conserved pathway that mediates this link. Herein, we describe poly, an essential gene in Drosophila that mediates InR–TOR signalling. Loss of poly results in lethality at the third instar larval stage, but only after a stage of extreme larval longevity. Analysis in Drosophila demonstrates that Poly and InR interact and that poly mutants show an overall decrease in InR–TOR signalling, as evidenced by decreased phosphorylation of Akt, S6K and 4E-BP. Metabolism is altered in poly mutants, as revealed by microarray expression analysis and a decreased triglyceride : protein ratio in mutant animals. Intriguingly, the cellular distribution of Poly is dependent on insulin stimulation in both Drosophila and human cells, moving to the nucleus with insulin treatment, consistent with a role in InR–TOR signalling. Together, these data reveal that Poly is a novel, conserved (from flies to humans) mediator of InR signalling that promotes an increase in cell growth and metabolism. Furthermore, homology to small subunits of Elongator demonstrates a novel, unexpected role for this complex in insulin signalling

    Lack of effect of lowering LDL cholesterol on cancer: meta-analysis of individual data from 175,000 people in 27 randomised trials of statin therapy

    Get PDF
    <p>Background: Statin therapy reduces the risk of occlusive vascular events, but uncertainty remains about potential effects on cancer. We sought to provide a detailed assessment of any effects on cancer of lowering LDL cholesterol (LDL-C) with a statin using individual patient records from 175,000 patients in 27 large-scale statin trials.</p> <p>Methods and Findings: Individual records of 134,537 participants in 22 randomised trials of statin versus control (median duration 4.8 years) and 39,612 participants in 5 trials of more intensive versus less intensive statin therapy (median duration 5.1 years) were obtained. Reducing LDL-C with a statin for about 5 years had no effect on newly diagnosed cancer or on death from such cancers in either the trials of statin versus control (cancer incidence: 3755 [1.4% per year [py]] versus 3738 [1.4% py], RR 1.00 [95% CI 0.96-1.05]; cancer mortality: 1365 [0.5% py] versus 1358 [0.5% py], RR 1.00 [95% CI 0.93–1.08]) or in the trials of more versus less statin (cancer incidence: 1466 [1.6% py] vs 1472 [1.6% py], RR 1.00 [95% CI 0.93–1.07]; cancer mortality: 447 [0.5% py] versus 481 [0.5% py], RR 0.93 [95% CI 0.82–1.06]). Moreover, there was no evidence of any effect of reducing LDL-C with statin therapy on cancer incidence or mortality at any of 23 individual categories of sites, with increasing years of treatment, for any individual statin, or in any given subgroup. In particular, among individuals with low baseline LDL-C (<2 mmol/L), there was no evidence that further LDL-C reduction (from about 1.7 to 1.3 mmol/L) increased cancer risk (381 [1.6% py] versus 408 [1.7% py]; RR 0.92 [99% CI 0.76–1.10]).</p> <p>Conclusions: In 27 randomised trials, a median of five years of statin therapy had no effect on the incidence of, or mortality from, any type of cancer (or the aggregate of all cancer).</p&gt

    Cultivo do chuchu.

    Get PDF
    bitstream/item/184877/1/digitalizar0107.pd

    The Drosophila RAD21 cohesin persists at the centromere region in mitosis

    Get PDF
    β€˜Cohesin’ is a highly conserved multiprotein complex thought to be the primary effector of sister-chromatid cohesion in all eukaryotes. Cohesin complexes in budding yeast hold sister chromatids together from S phase until anaphase, but in metazoans, cohesin proteins dissociate from chromosomes and redistribute into the whole cell volume during prophase, well before sister chromatids separate (reviewed in [1 and 2]). Here we address this apparent anomaly by investigating the cell-cycle dynamics of DRAD21, the Drosophila orthologue of the Xenopus XRAD21 and Saccharomyces cerevisiae Scc1p/Mcd1p cohesins [3]. Analysis of DRAD21 in S2 Drosophila tissue culture cells and live embryos expressing a DRAD21–green fluorescent protein (GFP) fusion revealed the presence of four distinct subcellular pools of DRAD21: a cytoplasmic pool; a chromosome-associated pool which dissociates from chromatin as chromosomes condense in prophase; a short-lived centrosome-associated pool present during metaphase–anaphase; and a centromere-proximal pool which remains bound to condensed chromosomes, is found along the junction of sister chromatids between kinetochores, and persists until the metaphase–anaphase transition. We conclude that in Drosophila, and possibly all metazoans, a minor pool of cohesin remains bound to centromere-proximal chromatin after prophase and maintains sister-chromatid cohesion until the metaphase–anaphase transition

    The Coiled Coils of Cohesin Are Conserved in Animals, but Not In Yeast

    Get PDF
    The SMC proteins are involved in DNA repair, chromosome condensation, and sister chromatid cohesion throughout Eukaryota. Long, anti-parallel coiled coils are a prominent feature of SMC proteins, and are thought to serve as spacer rods to provide an elongated structure and to separate domains. We reported recently that the coiled coils of mammalian condensin (SMC2/4) showed moderate sequence divergence (approximately 10-15%) consistent with their functioning as spacer rods. The coiled coils of mammalian cohesins (SMC1/3), however, were very highly constrained, with amino acid sequence divergence typically <0.5%. These coiled coils are among the most highly conserved mammalian proteins, suggesting that they make extensive contacts over their entire surface.Here, we broaden our initial analysis of condensin and cohesin to include additional vertebrate and invertebrate organisms and multiple species of yeast. We found that the coiled coils of SMC1/3 are highly constrained in Drosophila and other insects, and more generally across all animal species. However, in yeast they are no more constrained than the coils of SMC2/4 and Ndc80/Nuf2p, suggesting that they are serving primarily as spacer rods.SMC1/3 functions for sister chromatid cohesion in all species. Since its coiled coils apparently serve only as spacer rods in yeast, it is likely that this is sufficient for sister chromatid cohesion in all species. This suggests an additional function in animals that constrains the sequence of the coiled coils. Several recent studies have demonstrated that cohesin has a role in gene expression in post-mitotic neurons of Drosophila, and other animal cells. Some variants of human Cornelia de Lange Syndrome involve mutations in human SMC1/3. We suggest that the role of cohesin in gene expression may involve intimate contact of the coiled coils of SMC1/3, and impose the constraint on sequence divergence

    Specialized interfaces of Smc5/6 control hinge stability and DNA association

    Get PDF
    The Structural Maintenance of Chromosomes (SMC) complexes: cohesin, condensin and Smc5/6 are involved in the organization of higher-order chromosome structureβ€”which is essential for accurate chromosome duplication and segregation. Each complex is scaffolded by a specific SMC protein dimer (heterodimer in eukaryotes) held together via their hinge domains. Here we show that the Smc5/6-hinge, like those of cohesin and condensin, also forms a toroidal structure but with distinctive subunit interfaces absent from the other SMC complexes; an unusual β€˜molecular latch’ and a functional β€˜hub’. Defined mutations in these interfaces cause severe phenotypic effects with sensitivity to DNA-damaging agents in fission yeast and reduced viability in human cells. We show that the Smc5/6-hinge complex binds preferentially to ssDNA and that this interaction is affected by both β€˜latch’ and β€˜hub’ mutations, suggesting a key role for these unique features in controlling DNA association by the Smc5/6 complex

    Comparison study on k-word statistical measures for protein: From sequence to 'sequence space'

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many proposed statistical measures can efficiently compare protein sequence to further infer protein structure, function and evolutionary information. They share the same idea of using <it>k</it>-word frequencies of protein sequences. Given a protein sequence, the information on its related protein sequences hasn't been used for protein sequence comparison until now. This paper proposed a scheme to construct protein 'sequence space' which was associated with protein sequences related to the given protein, and the performances of statistical measures were compared when they explored the information on protein 'sequence space' or not. This paper also presented two statistical measures for protein: <it>gre.k </it>(generalized relative entropy) and <it>gsm.k </it>(gapped similarity measure).</p> <p>Results</p> <p>We tested statistical measures based on protein 'sequence space' or not with three data sets. This not only offers the systematic and quantitative experimental assessment of these statistical measures, but also naturally complements the available comparison of statistical measures based on protein sequence. Moreover, we compared our statistical measures with alignment-based measures and the existing statistical measures. The experiments were grouped into two sets. The first one, performed via ROC (Receiver Operating Curve) analysis, aims at assessing the intrinsic ability of the statistical measures to discriminate and classify protein sequences. The second set of the experiments aims at assessing how well our measure does in phylogenetic analysis. Based on the experiments, several conclusions can be drawn and, from them, novel valuable guidelines for the use of protein 'sequence space' and statistical measures were obtained.</p> <p>Conclusion</p> <p>Alignment-based measures have a clear advantage when the data is high redundant. The more efficient statistical measure is the novel <it>gsm.k </it>introduced by this article, the <it>cos.k </it>followed. When the data becomes less redundant, <it>gre.k </it>proposed by us achieves a better performance, but all the other measures perform poorly on classification tasks. Almost all the statistical measures achieve improvement by exploring the information on 'sequence space' as word's length increases, especially for less redundant data. The reasonable results of phylogenetic analysis confirm that <it>Gdis.k </it>based on 'sequence space' is a reliable measure for phylogenetic analysis. In summary, our quantitative analysis verifies that exploring the information on 'sequence space' is a promising way to improve the abilities of statistical measures for protein comparison.</p

    Meiosis genes in Daphnia pulex and the role of parthenogenesis in genome evolution

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Thousands of parthenogenetic animal species have been described and cytogenetic manifestations of this reproductive mode are well known. However, little is understood about the molecular determinants of parthenogenesis. The <it>Daphnia pulex </it>genome must contain the molecular machinery for different reproductive modes: sexual (both male and female meiosis) and parthenogenetic (which is either cyclical or obligate). This feature makes <it>D. pulex </it>an ideal model to investigate the genetic basis of parthenogenesis and its consequences for gene and genome evolution. Here we describe the inventory of meiotic genes and their expression patterns during meiotic and parthenogenetic reproduction to help address whether parthenogenesis uses existing meiotic and mitotic machinery, or whether novel processes may be involved.</p> <p>Results</p> <p>We report an inventory of 130 homologs representing over 40 genes encoding proteins with diverse roles in meiotic processes in the genome of <it>D. pulex</it>. Many genes involved in cell cycle regulation and sister chromatid cohesion are characterized by expansions in copy number. In contrast, most genes involved in DNA replication and homologous recombination are present as single copies. Notably, <it>RECQ2 </it>(which suppresses homologous recombination) is present in multiple copies while <it>DMC1 </it>is the only gene in our inventory that is absent in the <it>Daphnia </it>genome. Expression patterns for 44 gene copies were similar during meiosis <it>versus </it>parthenogenesis, although several genes displayed marked differences in expression level in germline and somatic tissues.</p> <p>Conclusion</p> <p>We propose that expansions in meiotic gene families in <it>D. pulex </it>may be associated with parthenogenesis. Taking into account our findings, we provide a mechanistic model of parthenogenesis, highlighting steps that must differ from meiosis including sister chromatid cohesion and kinetochore attachment.</p

    A shared role for RBF1 and dCAP-D3 in the regulation of transcription with consequences for innate immunity

    Get PDF
    Previously, we discovered a conserved interaction between RB proteins and the Condensin II protein CAP-D3 that is important for ensuring uniform chromatin condensation during mitotic prophase. The Drosophila melanogaster homologs RBF1 and dCAP-D3 co-localize on non-dividing polytene chromatin, suggesting the existence of a shared, non-mitotic role for these two proteins. Here, we show that the absence of RBF1 and dCAP-D3 alters the expression of many of the same genes in larvae and adult flies. Strikingly, most of the genes affected by the loss of RBF1 and dCAP-D3 are not classic cell cycle genes but are developmentally regulated genes with tissue-specific functions and these genes tend to be located in gene clusters. Our data reveal that RBF1 and dCAP-D3 are needed in fat body cells to activate transcription of clusters of antimicrobial peptide (AMP) genes. AMPs are important for innate immunity, and loss of either dCAP-D3 or RBF1 regulation results in a decrease in the ability to clear bacteria. Interestingly, in the adult fat body, RBF1 and dCAP-D3 bind to regions flanking an AMP gene cluster both prior to and following bacterial infection. These results describe a novel, non-mitotic role for the RBF1 and dCAP-D3 proteins in activation of the Drosophila immune system and suggest dCAP-D3 has an important role at specific subsets of RBF1-dependent genes
    • …
    corecore