41 research outputs found

    Reliability of Bioelectrical Impedance Analysis for Estimating Whole‐Fish Energy Density and Percent Lipids

    Full text link
    We evaluated bioelectrical impedance analysis (BIA) as a nonlethal means of predicting energy density and percent lipids for three fish species: Yellow perch Perca flavescens, walleye Sander vitreus, and lake whitefish Coregonus clupeaformis. Although models that combined BIA measures with fish wet mass provided strong predictions of total energy, total lipids, and total dry mass for whole fish, including BIA provided only slightly better predictions than using fish mass alone. Regression models that used BIA measures to directly predict the energy density or percent lipids of whole fish were generally better than those using body mass alone (based on Akaike’s information criterion). However, the goodness of fit of models that used BIA measures varied widely across species and at best explained only slightly more than one‐half the variation observed in fish energy density or percent lipids. Models that combined BIA measures with body mass for prediction had the strongest correlations between predicted and observed energy density or percent lipids for a validation group of fish, but there were significant biases in these predictions. For example, the models underestimated energy density and percent lipids for lipid‐rich fish and overestimated energy density and percent lipids for lipid‐poor fish. A comparison of observed versus predicted whole‐fish energy densities and percent lipids demonstrated that models that incorporated BIA measures had lower maximum percent error than models without BIA measures in them, although the errors for the BIA models were still generally high (energy density: 15‐18%; percent lipids: 82‐89%). Considerable work is still required before BIA can provide reliable predictions of whole‐fish energy density and percent lipids, including understanding how temperature, electrode placement, and the variation in lipid distribution within a fish affect BIA measures.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141722/1/tafs1519.pd

    Effects of climate and land-use changes on fish catches across lakes at a global scale

    Get PDF
    Globally, our knowledge on lake fisheries is still limited despite their importance to food security and livelihoods. Here we show that fish catches can respond either positively or negatively to climate and land-use changes, by analyzing time-series data (1970–2014) for 31 lakes across five continents. We find that effects of a climate or land-use driver (e.g., air temperature) on lake environment could be relatively consistent in directions, but consequential changes in a lake-environmental factor (e.g., water temperature) could result in either increases or decreases in fish catch in a given lake. A subsequent correlation analysis indicates that reductions in fish catch was less likely to occur in response to potential climate and land-use changes if a lake is located in a region with greater access to clean water. This finding suggests that adequate investments for water-quality protection and water-use efficiency can provide additional benefits to lake fisheries and food security

    Coastal Upwelling Supplies Oxygen-Depleted Water to the Columbia River Estuary

    Get PDF
    Low dissolved oxygen (DO) is a common feature of many estuarine and shallow-water environments, and is often attributed to anthropogenic nutrient enrichment from terrestrial-fluvial pathways. However, recent events in the U.S. Pacific Northwest have highlighted that wind-forced upwelling can cause naturally occurring low DO water to move onto the continental shelf, leading to mortalities of benthic fish and invertebrates. Coastal estuaries in the Pacific Northwest are strongly linked to ocean forcings, and here we report observations on the spatial and temporal patterns of oxygen concentration in the Columbia River estuary. Hydrographic measurements were made from transect (spatial survey) or anchor station (temporal survey) deployments over a variety of wind stresses and tidal states during the upwelling seasons of 2006 through 2008. During this period, biologically stressful levels of dissolved oxygen were observed to enter the Columbia River estuary from oceanic sources, with minimum values close to the hypoxic threshold of 2.0 mg L−1. Riverine water was consistently normoxic. Upwelling wind stress controlled the timing and magnitude of low DO events, while tidal-modulated estuarine circulation patterns influenced the spatial extent and duration of exposure to low DO water. Strong upwelling during neap tides produced the largest impact on the estuary. The observed oxygen concentrations likely had deleterious behavioral and physiological consequences for migrating juvenile salmon and benthic crabs. Based on a wind-forced supply mechanism, low DO events are probably common to the Columbia River and other regional estuaries and if conditions on the shelf deteriorate further, as observations and models predict, Pacific Northwest estuarine habitats could experience a decrease in environmental quality

    Utilization of stomach content DNA to determine diet diversity in piscivorous fishes

    No full text
    The objective of the study was to validate and apply DNA-based approaches to describe fish diets. Laboratory experiments were performed to determine the number of hours after ingestion that DNA could be reliably isolated from stomach content residues, particularly with small prey fishes (c. 1 cm, \u3c 0 center dot 75 g). Additionally, experiments were conducted at different temperatures to resolve temperature effects on digestion rate and DNA viability. The molecular protocol of cloning and sequencing was then applied to the analysis of stomach contents of wild fishes collected from the western basin of Lake Erie, Canada-U.S.A. The results showed that molecular techniques were more precise than traditional visual inspection and could provide insight into diet preferences for even highly digested prey that have lost all physical characteristics

    Eutrophication, water quality, and fisheries: a wicked management problem with insights from a century of change in Lake Erie

    No full text
    Human-driven nutrient inputs into aquatic ecosystems must be managed to preserve biodiversity and to ensure that valued fishery and water quality services are not compromised by hypoxia and harmful algal blooms. Aiming for nutrient inputs that achieve an intermediate level of ecosystem productivity is expected to provide both high fish yield and good water quality. However, we argue that such an intermediate “optimum” may not exist for many aquatic ecosystems that support multiple fisheries with differing tolerances to eutrophication and that must provide multiple water quality services. We further support this argument with an empirical case study of nearly a century (1915–2011) of change in the productivity of Lake Erie and its lake whitefish ( Coregonus clupeaformis ), walleye ( Sander vitreus ), and yellow perch ( Perca flavescens ) fisheries. We discuss and show how the harvest of each fishery has been historically maximized at different levels of ecosystem productivity. Additionally, we examine how anticipated management efforts to improve water quality by reducing nutrient inputs (i.e., oligotrophication) may favor certain fisheries over others, resulting in no single optimal range of nutrient inputs that achieves all valued fishery and water quality objectives. Our synthesis and case study illustrate how the need to balance multiple services in aquatic ecosystems can create a wicked management problem with inevitable trade-offs. To navigate these trade-offs, we recommend the use of ecosystem-based management approaches, which can help decision makers identify and resolve complex trade-offs by facilitating cooperative research and communication among water quality regulators, fisheries managers, and end users

    Anthropogenic change decouples a freshwater predator’s density feedback

    No full text
    Abstract Intraspecific interactions within predator populations can affect predator–prey dynamics and community structure, highlighting the need to better understand how these interactions respond to anthropogenic change. To this end, we used a half-century (1969–2018) of abundance and size-at-age data from Lake Erie’s walleye (Sander vitreus) population to determine how anthropogenic alterations have influenced intraspecific interactions. Before the 1980s, the length-at-age of younger walleye (ages 1 and 2) negatively correlated with older (age 3 +) walleye abundance, signaling a ‘density feedback’ in which intraspecific competition limited growth. However, after the early 1980s this signal of intraspecific competition disappeared. This decoupling of the density feedback was related to multiple anthropogenic changes, including a larger walleye population resulting from better fisheries management, planned nutrient reductions to improve water quality and transparency, warmer water temperatures, and the proliferation of a non-native fish with novel traits (white perch, Morone americana). We argue that these changes may have reduced competitive interactions by reducing the spatial overlap between older and younger walleye and by introducing novel prey. Our findings illustrate the potential for anthropogenic change to diminish density dependent intraspecific interactions within top predator populations, which has important ramifications for predicting predator dynamics and managing natural resources
    corecore