66 research outputs found

    Safety Profile of L-Arginine Infusion in Moderately Severe Falciparum Malaria

    Get PDF
    BACKGROUND: L-arginine infusion improves endothelial function in malaria but its safety profile has not been described in detail. We assessed clinical symptoms, hemodynamic status and biochemical parameters before and after a single L-arginine infusion in adults with moderately severe malaria. METHODOLOGY AND FINDINGS: In an ascending dose study, adjunctive intravenous L-arginine hydrochloride was infused over 30 minutes in doses of 3 g, 6 g and 12 g to three separate groups of 10 adults hospitalized with moderately severe Plasmodium falciparum malaria in addition to standard quinine therapy. Symptoms, vital signs and selected biochemical measurements were assessed before, during, and for 24 hours after infusion. No new or worsening symptoms developed apart from mild discomfort at the intravenous cannula site in two patients. There was a dose-response relationship between increasing mg/kg dose and the maximum decrease in systolic (ρ = 0.463; Spearman's, p = 0.02) and diastolic blood pressure (r = 0.42; Pearson's, p = 0.02), and with the maximum increment in blood potassium (r = 0.70, p<0.001) and maximum decrement in bicarbonate concentrations (r = 0.53, p = 0.003) and pH (r = 0.48, p = 0.007). At the highest dose (12 g), changes in blood pressure and electrolytes were not clinically significant, with a mean maximum decrease in mean arterial blood pressure of 6 mmHg (range: 0–11; p<0.001), mean maximal increase in potassium of 0.5 mmol/L (range 0.2–0.7 mmol/L; p<0.001), and mean maximal decrease in bicarbonate of 3 mEq/L (range 1–7; p<0.01) without a significant change in pH. There was no significant dose-response relationship with blood phosphate, lactate, anion gap and glucose concentrations. All patients had an uncomplicated clinical recovery. CONCLUSIONS/SIGNIFICANCE: Infusion of up to 12g of intravenous L-arginine hydrochloride over 30 minutes is well tolerated in adults with moderately severe malaria, with no clinically important changes in hemodynamic or biochemical status. Trials of adjunctive L-arginine can be extended to phase 2 studies in severe malaria. TRIAL REGISTRATION: ClinicalTrials.gov NCT0014736

    Impaired nitric oxide bioavailability and l-arginine–reversible endothelial dysfunction in adults with falciparum malaria

    Get PDF
    Severe falciparum malaria (SM) is associated with tissue ischemia related to cytoadherence of parasitized erythrocytes to microvascular endothelium and reduced levels of NO and its precursor, l-arginine. Endothelial function has not been characterized in SM but can be improved by l-arginine in cardiovascular disease. In an observational study in Indonesia, we measured endothelial function using reactive hyperemia–peripheral arterial tonometry (RH-PAT) in 51 adults with SM, 48 patients with moderately severe falciparum malaria (MSM), and 48 controls. The mean RH-PAT index was lower in SM (1.41; 95% confidence interval [CI] = 1.33–1.47) than in MSM (1.82; 95% CI = 1.7–2.02) and controls (1.93; 95% CI = 1.8–2.06; P < 0.0001). Endothelial dysfunction was associated with elevated blood lactate and measures of hemolysis. Exhaled NO was also lower in SM relative to MSM and controls. In an ascending dose study of intravenous l-arginine in 30 more patients with MSM, l-arginine increased the RH-PAT index by 19% (95% CI = 6–34; P = 0.006) and exhaled NO by 55% (95% CI = 32–73; P < 0.0001) without important side effects. Hypoargininemia and hemolysis likely reduce NO bioavailability. Endothelial dysfunction in malaria is nearly universal in severe disease, is reversible with l-arginine, and likely contributes to its pathogenesis. Clinical trials in SM of adjunctive agents to improve endothelial NO bioavailability, including l-arginine, are warranted

    Increased Asymmetric Dimethylarginine in Severe Falciparum Malaria: Association with Impaired Nitric Oxide Bioavailability and Fatal Outcome

    Get PDF
    Asymmetrical dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase (NOS), is a predictor of mortality in critical illness. Severe malaria (SM) is associated with decreased NO bioavailability, but the contribution of ADMA to the pathogenesis of impaired NO bioavailability and adverse outcomes in malaria is unknown. In adults with and without falciparum malaria, we tested the hypotheses that plasma ADMA would be: 1) increased in proportion to disease severity, 2) associated with impaired vascular and pulmonary NO bioavailability and 3) independently associated with increased mortality. We assessed plasma dimethylarginines, exhaled NO concentrations and endothelial function in 49 patients with SM, 78 with moderately severe malaria (MSM) and 19 healthy controls (HC). Repeat ADMA and endothelial function measurements were performed in patients with SM. Multivariable regression was used to assess the effect of ADMA on mortality and NO bioavailability. Plasma ADMA was increased in SM patients (0.85 µM; 95% CI 0.74–0.96) compared to those with MSM (0.54 µM; 95%CI 0.5–0.56) and HCs (0.64 µM; 95%CI 0.58–0.70; p<0.001). ADMA was an independent predictor of mortality in SM patients with each micromolar elevation increasing the odds of death 18 fold (95% CI 2.0–181; p = 0.01). ADMA was independently associated with decreased exhaled NO (rs = −0.31) and endothelial function (rs = −0.32) in all malaria patients, and with reduced exhaled NO (rs = −0.72) in those with SM. ADMA is increased in SM and associated with decreased vascular and pulmonary NO bioavailability. Inhibition of NOS by ADMA may contribute to increased mortality in severe malaria

    Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine

    Get PDF
    [This corrects the article DOI: 10.1186/s13054-016-1208-6.]

    Human malarial disease: a consequence of inflammatory cytokine release

    Get PDF
    Malaria causes an acute systemic human disease that bears many similarities, both clinically and mechanistically, to those caused by bacteria, rickettsia, and viruses. Over the past few decades, a literature has emerged that argues for most of the pathology seen in all of these infectious diseases being explained by activation of the inflammatory system, with the balance between the pro and anti-inflammatory cytokines being tipped towards the onset of systemic inflammation. Although not often expressed in energy terms, there is, when reduced to biochemical essentials, wide agreement that infection with falciparum malaria is often fatal because mitochondria are unable to generate enough ATP to maintain normal cellular function. Most, however, would contend that this largely occurs because sequestered parasitized red cells prevent sufficient oxygen getting to where it is needed. This review considers the evidence that an equally or more important way ATP deficency arises in malaria, as well as these other infectious diseases, is an inability of mitochondria, through the effects of inflammatory cytokines on their function, to utilise available oxygen. This activity of these cytokines, plus their capacity to control the pathways through which oxygen supply to mitochondria are restricted (particularly through directing sequestration and driving anaemia), combine to make falciparum malaria primarily an inflammatory cytokine-driven disease

    Physician agreement on the diagnosis of sepsis in the intensive care unit: Estimation of concordance and analysis of underlying factors in a multicenter cohort

    Get PDF
    © 2019 The Author(s). Background: Differentiating sepsis from the systemic inflammatory response syndrome (SIRS) in critical care patients is challenging, especially before serious organ damage is evident, and with variable clinical presentations of patients and variable training and experience of attending physicians. Our objective was to describe and quantify physician agreement in diagnosing SIRS or sepsis in critical care patients as a function of available clinical information, infection site, and hospital setting. Methods: We conducted a post hoc analysis of previously collected data from a prospective, observational trial (N = 249 subjects) in intensive care units at seven US hospitals, in which physicians at different stages of patient care were asked to make diagnostic calls of either SIRS, sepsis, or indeterminate, based on varying amounts of available clinical information (clinicaltrials.gov identifier: NCT02127502). The overall percent agreement and the free-marginal, inter-observer agreement statistic kappa (κ free) were used to quantify agreement between evaluators (attending physicians, site investigators, external expert panelists). Logistic regression and machine learning techniques were used to search for significant variables that could explain heterogeneity within the indeterminate and SIRS patient subgroups. Results: Free-marginal kappa decreased between the initial impression of the attending physician and (1) the initial impression of the site investigator (κ free 0.68), (2) the consensus discharge diagnosis of the site investigators (κ free 0.62), and (3) the consensus diagnosis of the external expert panel (κ free 0.58). In contrast, agreement was greatest between the consensus discharge impression of site investigators and the consensus diagnosis of the external expert panel (κ free 0.79). When stratified by infection site, κ free for agreement between initial and later diagnoses had a mean value + 0.24 (range-0.29 to + 0.39) for respiratory infections, compared to + 0.70 (range + 0.42 to + 0.88) for abdominal + urinary + other infections. Bioinformatics analysis failed to clearly resolve the indeterminate diagnoses and also failed to explain why 60% of SIRS patients were treated with antibiotics. Conclusions: Considerable uncertainty surrounds the differential clinical diagnosis of sepsis vs. SIRS, especially before organ damage has become highly evident, and for patients presenting with respiratory clinical signs. Our findings underscore the need to provide physicians with accurate, timely diagnostic information in evaluating possible sepsis
    corecore