275 research outputs found

    Relating statistics to dynamics in axisymmetric homogeneous turbulence

    Full text link
    The structure and the dynamics of homogeneous turbulence are modified by the presence of body forces such that the Coriolis or the buoyancy forces, which may render a wide range of turbulence scales anisotropic. The corresponding statistical characterization of such effects is done in physical space using structure functions, as well as in spectral space with spectra of two-point correlations, providing two complementary viewpoints. In this framework, second-order and third-order structure functions are put in parallel with spectra of two-point second- and third-order velocity correlation functions, using passage relations. Such relations apply in the isotropic case, or for isotropically averaged statistics, which, however, do not reflect the actual more complex structure of anisotropic turbulence submitted to rotation or stratification. This complexity is demonstrated in this paper by orientation-dependent energy and energy transfer spectra produced in both cases by means of a two-point statistical model for axisymmetric turbulence. We show that, to date, the anisotropic formalism used in the spectral transfer statistics is especially well-suited to analyze the refined dynamics of anisotropic homogeneous turbulence, and that it can help in the analysis of isotropically computed third-order structure function statistics often used to characterize anisotropic contexts.Comment: Physica

    Dimensional transition in rotating turbulence

    Get PDF
    In this work we investigate, by means of direct numerical simulations, how rotation affects the bi-dimensionalization of a turbulent flow. We study a thin layer of fluid, forced by a two-dimensional forcing, within the framework of the "split cascade" in which the injected energy flows both to small scales (generating the direct cascade) and to large scale (to form the inverse cascade). It is shown that rotation reinforces the inverse cascade at the expense of the direct one, thus promoting bi-dimensionalization of the flow. This is achieved by a suppression of the enstrophy production at large scales. Nonetheless, we find that, in the range of rotation rates investigated, increasing the the vertical scale causes a reduction of the flux of the inverse cascade. Our results suggest that, even in rotating flows, the inverse cascade may eventually disappear when the vertical scale is sufficiently large with respect to the forcing scale

    Land Use History and the Build-Up and Decline of Species Richness in Scandinavian Semi-Natural Grasslands

    Get PDF
    Scandinavian semi-natural grasslands have an exceptionally high small-scale species richness. In the past, these grasslands covered extensive areas but they have declined drastically during the last century. How species richness of semi-natural grasslands was built up during history, and how species respond to land use change, are discussed. The agricultural expansion from the late Iron Age was associated with increasing grassland extent and spatial predictability, resulting in accumulation of species at small spatial scales. Although few species directly depend on management, the specific composition of these grasslands is a product of haymaking and grazing. Grassland fragmentation initially has small effects on species richness, due to slow extinction of many species. Species loss in grasslands is, however, expected in the coming decades. Restoration efforts may fail due to slow colonization. Effects of landscape configuration may be overlooked, if land use history is not considered, since present-day species richness largely reflects landscape history

    Electrophysiological evidence for differences between fusion and combination illusions in audiovisual speech perception

    Get PDF
    Accepted manuscript online: 4 October 2017Incongruent audiovisual speech stimuli can lead to perceptual illusions such as fusions or combinations. Here, we investigated the underlying audiovisual integration process by measuring ERPs. We observed that visual speech-induced suppression of P2 amplitude (which is generally taken as a measure of audiovisual integration) for fusions was similar to suppression obtained with fully congruent stimuli, whereas P2 suppression for combinations was larger. We argue that these effects arise because the phonetic incongruency is solved differently for both types of stimuli.MB was supported by the Spanish Ministry of Economy and Competitiveness (MINECO grant FPDI-2013-15661) and the Netherlands Organization for Scientific Research (NWO VENI grant 275-89-027)

    Consent and privacy in telemedicine.

    Get PDF
    The electronic broadcast of a medical interview, or a video tele-consultation (VTC), challenges many of our traditional concepts of privacy and confidentiality. The nature of a doctor-patient relationship changes dramatically when the open airwaves carry the personal histories, images, and concerns of a patient. Discussions of telemedicine often allude to inherent ethical concerns yet there are no established guidelines for the ethical conduct of a VTC

    Comment on "Reinterpreting aircraft measurement in anisotropic scaling turbulence" by Lovejoy et al. (2009)

    Get PDF
    Recently, Lovejoy et al. (2009) argued that the steep ~k−3 atmospheric kinetic energy spectrum at synoptic scales (≥1000 km) observed by aircraft is a spurious artefact of aircraft following isobars instead of isoheights. Without taking into account the earth's rotation they hypothesise that the horizontal atmospheric energy spectrum should scale as k−5/3 at all scales. We point out that the approximate k−3-spectrum at synoptic scales has been observed by a number of non-aircraft means since the 1960s and that general circulation models and other current models have successfully produced this spectrum. We also argue that the vertical movements of the aircraft are far too small to cause any strong effect on the measured spectrum at synoptic scales

    Curve Your Enthusiasm: Concurvity Regularization in Differentiable Generalized Additive Models

    Full text link
    Generalized Additive Models (GAMs) have recently experienced a resurgence in popularity due to their interpretability, which arises from expressing the target value as a sum of non-linear transformations of the features. Despite the current enthusiasm for GAMs, their susceptibility to concurvity - i.e., (possibly non-linear) dependencies between the features - has hitherto been largely overlooked. Here, we demonstrate how concurvity can severly impair the interpretability of GAMs and propose a remedy: a conceptually simple, yet effective regularizer which penalizes pairwise correlations of the non-linearly transformed feature variables. This procedure is applicable to any differentiable additive model, such as Neural Additive Models or NeuralProphet, and enhances interpretability by eliminating ambiguities due to self-canceling feature contributions. We validate the effectiveness of our regularizer in experiments on synthetic as well as real-world datasets for time-series and tabular data. Our experiments show that concurvity in GAMs can be reduced without significantly compromising prediction quality, improving interpretability and reducing variance in the feature importances
    corecore