830 research outputs found
Quantum theory of electron tunneling into intersubband cavity polariton states
Through a non-perturbative quantum theory, we investigate how the
quasi-electron excitations of a two-dimensional electron gas are modified by
strong coupling to the vacuum field of a microcavity. We show that the
electronic dressed states originate from a Fano-like coupling between the bare
electron states and the continuum of intersubband cavity polariton excitations.
In particular, we calculate the electron spectral function modified by
light-matter interactions and its impact on the electronic injection of
intersubband cavity polaritons. The domain of validity of the present
theoretical results is critically discussed. We show that resonant electron
tunneling from a narrow-band injector can selectively excite superradiant
states and produce efficient intersubband polariton electroluminescence
Comparison of Blood and Brain Mercury Levels in Infant Monkeys Exposed to Methylmercury or Vaccines Containing Thimerosal
Thimerosal is a preservative that has been used in manufacturing vaccines since the 1930s. Reports have indicated that infants can receive ethylmercury (in the form of thimerosal) at or above the U.S. Environmental Protection Agency guidelines for methylmercury exposure, depending on the exact vaccinations, schedule, and size of the infant. In this study we compared the systemic disposition and brain distribution of total and inorganic mercury in infant monkeys after thimerosal exposure with those exposed to MeHg. Monkeys were exposed to MeHg (via oral gavage) or vaccines containing thimerosal (via intramuscular injection) at birth and 1, 2, and 3 weeks of age. Total blood Hg levels were determined 2, 4, and 7 days after each exposure. Total and inorganic brain Hg levels were assessed 2, 4, 7, or 28 days after the last exposure. The initial and terminal half-life of Hg in blood after thimerosal exposure was 2.1 and 8.6 days, respectively, which are significantly shorter than the elimination half-life of Hg after MeHg exposure at 21.5 days. Brain concentrations of total Hg were significantly lower by approximately 3-fold for the thimerosal-exposed monkeys when compared with the MeHg infants, whereas the average brain-to-blood concentration ratio was slightly higher for the thimerosal-exposed monkeys (3.5 ± 0.5 vs. 2.5 ± 0.3). A higher percentage of the total Hg in the brain was in the form of inorganic Hg for the thimerosal-exposed monkeys (34% vs. 7%). The results indicate that MeHg is not a suitable reference for risk assessment from exposure to thimerosal-derived Hg. Knowledge of the toxicokinetics and developmental toxicity of thimerosal is needed to afford a meaningful assessment of the developmental effects of thimerosal-containing vaccines
Positronium density measurements using polaritonic effects
Recent experimental advances in positronium (Ps) physics have made it possible to produce dense Ps ensembles in which Ps-Ps interactions may occur, leading to the production of Ps2 molecules and paving the way to the realization of a Ps Bose-Einstein condensate (BEC). In order to achieve this latter goal it would be advantageous to develop new methods to measure Ps densities in real time. Here we describe a possible approach to do this using polaritonic methods: Using realistic experimental parameters, we demonstrate that a dense Ps gas can be strongly coupled to the photonic field of a distributed Bragg reflector microcavity. In this strongly coupled regime, the optical spectrum of the system is composed of two hybrid positronium-polariton resonances separated by the vacuum Rabi splitting, which is proportional to the square root of the Ps density. Given that polaritons can be created on a subcycle timescale, a spectroscopic measurement of the vacuum Rabi splitting could be used as an ultrafast Ps density measurement in regimes relevant to Ps BEC formation. Moreover, we show how positronium polaritons could potentially enter the ultrastrong light-matter coupling regime, introducing a platform to explore its nonperturbative phenomenology
Light-matter decoupling and A2 term detection in superconducting circuits
APS March Meeting 2015, San Antonio, Texas, March 2–6, 2015We study the spontaneous emission of a qubit interacting with a one-dimensional waveguide through a realistic minimal-coupling interaction. We show that the diamagnetic term A2 leads to an effective decoupling of a single qubit from the electromagnetic field. This effect is observable at any range of qubit-photon couplings. For this we study a setup consisting of a transmon that is suspended over a transmission line. Assuming a standard model of qubit-line interaction, we prove that the relative strength of the A2 term is controlled with the qubit-line separation and show that, as a consequence, the spontaneous emission rate of the suspended transmon onto the line can increase with such separation, instead of decreasing.Peer Reviewe
Physical approximations for the nonlinear evolution of perturbations in dark energy scenarios
The abundance and distribution of collapsed objects such as galaxy clusters
will become an important tool to investigate the nature of dark energy and dark
matter. Number counts of very massive objects are sensitive not only to the
equation of state of dark energy, which parametrizes the smooth component of
its pressure, but also to the sound speed of dark energy as well, which
determines the amount of pressure in inhomogeneous and collapsed structures.
Since the evolution of these structures must be followed well into the
nonlinear regime, and a fully relativistic framework for this regime does not
exist yet, we compare two approximate schemes: the widely used spherical
collapse model, and the pseudo-Newtonian approach. We show that both
approximation schemes convey identical equations for the density contrast, when
the pressure perturbation of dark energy is parametrized in terms of an
effective sound speed. We also make a comparison of these approximate
approaches to general relativity in the linearized regime, which lends some
support to the approximations.Comment: 15 pages, 2 figure
Structure formation in the presence of dark energy perturbations
We study non-linear structure formation in the presence of dark energy. The
influence of dark energy on the growth of large-scale cosmological structures
is exerted both through its background effect on the expansion rate, and
through its perturbations as well. In order to compute the rate of formation of
massive objects we employ the Spherical Collapse formalism, which we generalize
to include fluids with pressure. We show that the resulting non-linear
evolution equations are identical to the ones obtained in the Pseudo-Newtonian
approach to cosmological perturbations, in the regime where an equation of
state serves to describe both the background pressure relative to density, and
the pressure perturbations relative to the density perturbations as well. We
then consider a wide range of constant and time-dependent equations of state
(including phantom models) parametrized in a standard way, and study their
impact on the non-linear growth of structure. The main effect is the formation
of dark energy structure associated with the dark matter halo: non-phantom
equations of state induce the formation of a dark energy halo, damping the
growth of structures; phantom models, on the other hand, generate dark energy
voids, enhancing structure growth. Finally, we employ the Press-Schechter
formalism to compute how dark energy affects the number of massive objects as a
function of redshift.Comment: 21 pages, 8 figures. Matches published version, with caption of Fig.
6 correcte
Insights into the Structure of Dot@Rod and Dot@Octapod CdSe@CdS Heterostructures
CdSe@CdS dot@rods with diameter around 6 nm and length of either
20, 27, or 30 nm and dot@octapods with pod diameters of ?15 nm and lengths of ?50
nm were investigated by X-ray absorption spectroscopy. These heterostructures are
prepared by seed-mediated routes, where the structure, composition, and morphology of
the CdSe nanocrystals used as a seed play key roles in directing the growth of the second
semiconducting domain. The local structural environment of all the elements in the
CdSe@CdS heterostructures was investigated at the Cd, S, and Se K-edges by taking
advantage of the selectivity of X-ray absorption spectroscopy, and was compared to pure
reference compounds. We found that the structural features of dot@rods are
independent of the size of the rods. These structures can be described as made of a
CdSe dot and a CdS rod, both in the wurtzite phase with a high crystallinity of both the
core and the rod. This result supports the effectiveness of high temperature colloidal
synthesis in promoting the formation of core@shell nanocrystals with very low
defectivity. On the other hand, data on the CdSe@CdS with octapod morphology suggest the occurrence of a core composed of
a CdSe cubic sphalerite phase with eight pods made of CdS wurtzite phase. Our findings are compared to current models
proposed for the design of functional heterostructures with controlled nanoarchitecture
- …