12,461 research outputs found

    British economic growth and the business cycle, 1700-1870 : annual estimates

    Get PDF
    This paper provides the first annual GDP series for Great Britain over the period 1700-1870. The series is constructed in real terms from the output side, using volume indicators and value added weights. Sectoral estimates are provided for agriculture, industry and services, and for a number of sub-sectors. Estimates of nominal GDP are also provided, based on a benchmark for 1841 and projected back to 1700 and forward to 1870 using the real output series and sectoral price indices. The new data are used to provide a consistent account of economic growth and the business cycle. The results are broadly consistent with the long run path of real output suggested by Crafts and Harley, although growth rates for sub-periods differ, largely as a result of changes in the growth of agriculture. Nominal GDP increased more rapidly than suggested by Lindert and Williamson during the eighteenth century, and more slowly than suggested by Deane and Cole during the first half of the nineteenth century, as a result of differences in the price indices. We also refine the business cycle chronologies of Ashton and Gayer, Rostow and Schwartz

    From Hipparcos to Gaia

    Full text link
    The measurement of the positions, distances, motions and luminosities of stars represents the foundations of modern astronomical knowledge. Launched at the end of the eighties, the ESA Hipparcos satellite was the first space mission dedicated to such measurements. Hipparcos improved position accuracies by a factor of 100 compared to typical ground-based results and provided astrometric and photometric multi-epoch observations of 118,000 stars over the entire sky. The impact of Hipparcos on astrophysics has been extremely valuable and diverse. Building on this important European success, the ESA Gaia cornerstone mission promises an even more impressive advance. Compared to Hipparcos, it will bring a gain of a factor 50 to 100 in position accuracy and of a factor of 10,000 in star number, collecting photometric, spectrophotometric and spectroscopic data for one billion celestial objects. During its 5-year flight, Gaia will measure objects repeatedly, up to a few hundred times, providing an unprecedented database to study the variability of all types of celestial objects. Gaia will bring outstanding contributions, directly or indirectly, to most fields of research in astrophysics, such as the study of our Galaxy and of its stellar constituents, the search for planets outside the solar system.Comment: 6 pages. New Horizons in Time Domain Astronomy Proceedings IAU Symposium No. 285, 2012, E. Griffin, B. Hanisch & R. Seaman, ed

    Learning what matters - Sampling interesting patterns

    Get PDF
    In the field of exploratory data mining, local structure in data can be described by patterns and discovered by mining algorithms. Although many solutions have been proposed to address the redundancy problems in pattern mining, most of them either provide succinct pattern sets or take the interests of the user into account-but not both. Consequently, the analyst has to invest substantial effort in identifying those patterns that are relevant to her specific interests and goals. To address this problem, we propose a novel approach that combines pattern sampling with interactive data mining. In particular, we introduce the LetSIP algorithm, which builds upon recent advances in 1) weighted sampling in SAT and 2) learning to rank in interactive pattern mining. Specifically, it exploits user feedback to directly learn the parameters of the sampling distribution that represents the user's interests. We compare the performance of the proposed algorithm to the state-of-the-art in interactive pattern mining by emulating the interests of a user. The resulting system allows efficient and interleaved learning and sampling, thus user-specific anytime data exploration. Finally, LetSIP demonstrates favourable trade-offs concerning both quality-diversity and exploitation-exploration when compared to existing methods.Comment: PAKDD 2017, extended versio

    Contribution of postnatal collagen reorientation to depth-dependent mechanical properties of articular cartilage

    Get PDF
    The collagen fibril network is an important factor for the depth-dependent mechanical behaviour of adult articular cartilage (AC). Recent studies show that collagen orientation is parallel to the articular surface throughout the tissue depth in perinatal animals, and that the collagen orientations transform to a depth-dependent arcade-like structure in adult animals. Current understanding on the mechanobiology of postnatal AC development is incomplete. In the current paper, we investigate the contribution of collagen fibril orientation changes to the depth-dependent mechanical properties of AC. We use a composition-based finite element model to simulate in a 1-D confined compression geometry the effects of ten different collagen orientation patterns that were measured in developing sheep. In initial postnatal life, AC is mostly subject to growth and we observe only small changes in depth-dependent mechanical behaviour. Functional adaptation of depth-dependent mechanical behaviour of AC takes place in the second half of life before puberty. Changes in fibril orientation alone increase cartilage stiffness during development through the modulation of swelling strains and osmotic pressures. Changes in stiffness are most pronounced for small stresses and for cartilage adjacent to the bone. We hypothesize that postnatal changes in collagen fibril orientation induce mechanical effects that in turn promote these changes. We further hypothesize that a part of the depth-dependent postnatal increase in collagen content in literature is initiated by the depth-dependent postnatal increase in fibril strain due to collagen fibril reorientatio

    Does individual variation in metabolic phenotype predict fish behaviour and performance?

    Get PDF
    There is increasing interest in documenting and explaining the existence of marked intraspecific variation in metabolic rate in animals, with fishes providing some of the best-studied examples. After accounting for variation due to other factors, there can typically be a two to three-fold variation among individual fishes for both standard and maximum metabolic rate (SMR and MMR). This variation is reasonably consistent over time (provided that conditions remain stable), and its underlying causes may be influenced by both genes and developmental conditions. In this paper, current knowledge of the extent and causes of individual variation in SMR, MMR and aerobic scope (AS), collectively its metabolic phenotype, is reviewed and potential links among metabolism, behaviour and performance are described. Intraspecific variation in metabolism has been found to be related to other traits: fishes with a relatively high SMR tend to be more dominant and grow faster in high food environments, but may lose their advantage and are more prone to risk-taking when conditions deteriorate. In contrast to the wide body of research examining links between SMR and behavioural traits, very little work has been directed towards understanding the ecological consequences of individual variation in MMR and AS. Although AS can differ among populations of the same species in response to performance demands, virtually nothing is known about the effects of AS on individual behaviours such as those associated with foraging or predator avoidance. Further, while factors such as food availability, temperature, hypoxia and the fish's social environment are known to alter resting and MMRs in fishes, there is a paucity of studies examining how these effects vary among individuals, and how this variation relates to behaviour. Given the observed links between metabolism and measures of performance, understanding the metabolic responses of individuals to changing environments will be a key area for future research because the environment will have a strong influence on which animals survive predation, become dominant and ultimately have the highest reproductive success. Although current evidence suggests that variation in SMR may be maintained within populations via context-dependent fitness benefits, it is suggested that a more integrative approach is now required to fully understand how the environment can modulate individual performance via effects on metabolic phenotypes encompassing SMR, MMR and AS

    Strongly coupled modes in a weakly driven micromechanical resonator

    Full text link
    We demonstrate strong coupling between the flexural vibration modes of a clamped-clamped micromechanical resonator vibrating at low amplitudes. This coupling enables the direct measurement of the frequency response via amplitude- and phase modulation schemes using the fundamental mode as a mechanical detector. In the linear regime, a frequency shift of 0.8 Hz\mathrm{0.8\,Hz} is observed for a mode with a line width of 5.8 Hz\mathrm{5.8\,Hz} in vacuum. The measured response is well-described by the analytical model based on the Euler-Bernoulli beam including tension. Calculations predict an upper limit for the room-temperature Q-factor of 4.5×105\mathrm{4.5\times10^5} for our top-down fabricated micromechanical beam resonators.Comment: 9 pages, 2 figure

    Some modifications to the SNIP journal impact indicator

    Get PDF
    The SNIP (source normalized impact per paper) indicator is an indicator of the citation impact of scientific journals. The indicator, introduced by Henk Moed in 2010, is included in Elsevier's Scopus database. The SNIP indicator uses a source normalized approach to correct for differences in citation practices between scientific fields. The strength of this approach is that it does not require a field classification system in which the boundaries of fields are explicitly defined. In this paper, a number of modifications that will be made to the SNIP indicator are explained, and the advantages of the resulting revised SNIP indicator are pointed out. It is argued that the original SNIP indicator has some counterintuitive properties, and it is shown mathematically that the revised SNIP indicator does not have these properties. Empirically, the differences between the original SNIP indicator and the revised one turn out to be relatively small, although some systematic differences can be observed. Relations with other source normalized indicators proposed in the literature are discussed as well

    Challenges and Pitfalls in Human Milk Oligosaccharide Analysis

    Get PDF
    Human milk oligosaccharides have been recognized as an important, functional biomolecule in mothers' milk. Moreover, these oligosaccharides have been recognized as the third most abundant component of human milk, ranging from 10-15 g/L in mature milk and up to and over 20 g/L reported in colostrum. Initially, health benefits of human milk oligosaccharides were assigned via observational studies on the differences between breastfed and bottle fed infants. Later, pools of milk oligosaccharides were isolated and used in functional studies and in recent years more specific studies into structure-function relationships have identified some advanced roles for milk oligosaccharides in the healthy development of infants. In other research, the levels, diversity, and complexity of human milk oligosaccharides have been studied, showing a wide variation in results. This review gives a critical overview of challenges in the analysis of human milk oligosaccharides. In view of the myriad functions that can be assigned, often to specific structures or classes of structures, it is very relevant to assess the levels of these structures in the human milk correctly, as well as in other biological sample materials. Ultimately, the review makes a case for a comparative, inter-laboratory study on quantitative human milk oligosaccharide analysis in all relevant biological samples
    • …
    corecore