240 research outputs found

    The Emotional Information Processing System is Risk Averse: Ego-Depletion and Investment Behavior

    Get PDF
    Two experiments show that a shortage of self-regulatory resources results in more risk aversion in mixed-gamble (gain/loss) situations. The findings support a dual process view that distinguishes between a rational and an affective information processing system, in which self-regulatory resources are the necessary fuel for the rational system. Depending on the expected values of risk seeking versus risk averse behavior, ego depletion can have negative (experiment 1) as well as positive (experiment 2) consequences for investment behavior

    Contrasting Expression of Canonical Wnt Signaling Reporters TOPGAL, BATGAL and Axin2LacZ during Murine Lung Development and Repair

    Get PDF
    Canonical Wnt signaling plays multiple roles in lung organogenesis and repair by regulating early progenitor cell fates: investigation has been enhanced by canonical Wnt reporter mice, TOPGAL, BATGAL and Axin2LacZ. Although widely used, it remains unclear whether these reporters convey the same information about canonical Wnt signaling. We therefore compared beta-galactosidase expression patterns in canonical Wnt signaling of these reporter mice in whole embryo versus isolated prenatal lungs. To determine if expression varied further during repair, we analyzed comparative pulmonary expression of beta-galactosidase after naphthalene injury. Our data show important differences between reporter mice. While TOPGAL and BATGAL lines demonstrate Wnt signaling well in early lung epithelium, BATGAL expression is markedly reduced in late embryonic and adult lungs. By contrast, Axin2LacZ expression is sustained in embryonic lung mesenchyme as well as epithelium. Three days into repair after naphthalene, BATGAL expression is induced in bronchial epithelium as well as TOPGAL expression (already strongly expressed without injury). Axin2LacZ expression is increased in bronchial epithelium of injured lungs. Interestingly, both TOPGAL and Axin2LacZ are up regulated in parabronchial smooth muscle cells during repair. Therefore the optimal choice of Wnt reporter line depends on whether up- or down-regulation of canonical Wnt signal reporting in either lung epithelium or mesenchyme is being compared

    卒後13年目の研修医

    Get PDF
    © 2015. Published by The Company of Biologists Ltd. Lipid-containing alveolar interstitial fibroblasts (lipofibroblasts) are increasingly recognized as an important component of the epithelial stem cell niche in the rodent lung. Although lipofibroblasts were initially believed merely to assist type 2 alveolar epithelial cells in surfactant production during neonatal life, recent evidence suggests that these cells are indispensable for survival and growth of epithelial stem cells during adulthood. Despite increasing interest in lipofibroblast biology, little is known about their cellular origin or the molecular pathways controlling their formation during embryonic development. Here, we showthat a population of lipid-droplet-containing stromal cells emerges in the developing mouse lung between E15.5 and E16.5. This is accompanied by significant upregulation, in the lung mesenchyme, of peroxisome proliferator-activated receptor gamma (master switch of lipogenesis), adipose differentiation-related protein (marker of mature lipofibroblasts) and fibroblast growth factor 10 (previously shown to identify a subpopulation of lipofibroblast progenitors). We also demonstrate that although only a subpopulation of total embryonic lipofibroblasts derives from Fgf10+ progenitor cells, in vivo knockdown of Fgfr2b ligand activityand reduction in Fgf10 expression lead to global reduction in the expression levels of lipofibroblast markers at E18.5. Constitutive Fgfr1b knockouts and mutants with conditional partial inactivation of Fgfr2b in the lung mesenchyme reveal the involvement of both receptors in lipofibroblast formation and suggest a possible compensation between the two receptors. We also provide data from human fetal lungs to demonstrate the relevance of our discoveries to humans. Our results reveal an essential role for Fgf10 signaling in the formation of lipofibroblasts during late lung development

    Methodological issues in cross-cultural research

    Get PDF
    Regardless of whether the research goal is to establish cultural universals or to identify and explain cross-cultural differences, researchers need measures that are comparable across different cultures when conducting cross-cultural studies. In this chapter, we describe two major strategies for enhancing cross-cultural comparability. First, we discuss a priori methods to ensure the comparability of data in cross-cultural surveys. In particular, we review findings on cross-cultural differences based on the psychology of survey response and provide suggestions on how to deal with these cultural differences in the survey design stage. Second, we discuss post hoc methods to ascertain data comparability and enable comparisons in the presence of threats to equivalence

    FGF10 maintains distal lung bud epithelium and excessive signaling leads to progenitor state arrest, distalization, and goblet cell metaplasia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interaction with the surrounding mesenchyme is necessary for development of endodermal organs, and Fibroblast growth factors have recently emerged as mesenchymal-expressed morphogens that direct endodermal morphogenesis. The fibroblast growth factor 10 (<it>Fgf10</it>) null mouse is characterized by the absence of lung bud development. Previous studies have shown that this requirement for <it>Fgf10 </it>is due in part to its role as a chemotactic factor during branching morphogenesis. In other endodermal organs <it>Fgf10 </it>also plays a role in regulating differentiation.</p> <p>Results</p> <p>Through gain-of-function analysis, we here find that FGF10 inhibits differentiation of the lung epithelium and promotes distalization of the embryonic lung. Ectopic expression of FGF10 in the lung epithelium caused impaired lung development and perinatal lethality in a transgenic mouse model. Lung lobes were enlarged due to increased interlobular distance and hyperplasia of the airway epithelium. Differentiation of bronchial and alveolar cell lineages was inhibited. The transgenic epithelium consisted predominantly of proliferating progenitor-like cells expressing Pro-surfactant protein C, TTF1, PEA3 and Clusterin similarly to immature distal tip cells. Strikingly, goblet cells developed within this arrested epithelium leading to goblet cell hyperplasia.</p> <p>Conclusion</p> <p>We conclude that FGF10 inhibits terminal differentiation in the embryonic lung and maintains the distal epithelium, and that excessive levels of FGF10 leads to metaplastic differentiation of goblet cells similar to that seen in chronic inflammatory diseases.</p

    Ror2 modulates the canonical Wnt signaling in lung epithelial cells through cooperation with Fzd2

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Wnt signaling is mediated through 1) the beta-catenin dependent canonical pathway and, 2) the beta-catenin independent pathways. Multiple receptors, including Fzds, Lrps, Ror2 and Ryk, are involved in Wnt signaling. Ror2 is a single-span transmembrane receptor-tyrosine kinase (RTK). The functions of Ror2 in mediating the non-canonical Wnt signaling have been well established. The role of Ror2 in canonical Wnt signaling is not fully understood.</p> <p>Results</p> <p>Here we report that Ror2 also positively modulates Wnt3a-activated canonical signaling in a lung carcinoma, H441 cell line. This activity of Ror2 is dependent on cooperative interactions with Fzd2 but not Fzd7. In addition, Ror2-mediated enhancement of canonical signaling requires the extracellular CRD, but not the intracellular PRD domain of Ror2. We further provide evidence that the positive effect of Ror2 on canonical Wnt signaling is inhibited by Dkk1 and Krm1 suggesting that Ror2 enhances an Lrp-dependent STF response.</p> <p>Conclusion</p> <p>The current study demonstrates the function of Ror2 in modulating canonical Wnt signaling. These findings support a functional scheme whereby regulation of Wnt signaling is achieved by cooperative functions of multiple mediators.</p

    Canonical wnt signaling activity in early stages of chick lung development

    Get PDF
    Wnt signaling pathway is an essential player during vertebrate embryonic development which has been associated with several developmental processes such as gastrulation, body axis formation and morphogenesis of numerous organs, namely the lung. Wnt proteins act through specific transmembrane receptors, which activate intracellular pathways that regulate cellular processes such as cell proliferation, differentiation and death. Morphogenesis of the fetal lung depends on epithelial-mesenchymal interactions that are governed by several growth and transcription factors that regulate cell proliferation, fate, migration and differentiation. This process is controlled by different signaling pathways such as FGF, Shh and Wnt among others. Wnt signaling is recognized as a key molecular player in mammalian pulmonary development but little is known about its function in avian lung development. The present work characterizes, for the first time, the expression pattern of several Wnt signaling members, such as wnt-1, wnt-2b, wnt-3a, wnt-5a, wnt-7b, wnt-8b, wnt-9a, lrp5, lrp6, sfrp1, dkk1, β-catenin and axin2 at early stages of chick lung development. In general, their expression is similar to their mammalian counterparts. By assessing protein expression levels of active/total β-catenin and phospho-LRP6/LRP6 it is revealed that canonical Wnt signaling is active in this embryonic tissue. In vitro inhibition studies were performed in order to evaluate the function of Wnt signaling pathway in lung branching. Lung explants treated with canonical Wnt signaling inhibitors (FH535 and PK115-584) presented an impairment of secondary branch formation after 48 h of culture along with a decrease in axin2 expression levels. Branching analysis confirmed this inhibition. Wnt-FGF crosstalk assessment revealed that this interaction is preserved in the chick lung. This study demonstrates that Wnt signaling is crucial for precise chick lung branching and further supports the avian lung as a good model for branching studies since it recapitulates early mammalian pulmonary development.Rute S. Moura was supported by a grant of ON.2 SR&TD Integrated Program (N-01-01-0124-01-07), ref: UMINHO/BPD/31/2013. The funders had no role in study design, data collection and analysis

    Health Assessment Questionnaire-Disability Index (HAQ-DI) use in modelling disease progression in diffuse cutaneous systemic sclerosis: an analysis from the EUSTAR database

    Get PDF
    BACKGROUND: Patients with diffuse cutaneous systemic sclerosis (dcSSc) have a poor prognosis. The importance of monitoring subjective measures of functioning and disability, such as the Health Assessment Questionnaire-Disability Index (HAQ-DI), is important as dcSSc is rated by patients as worse than diabetes or hemodialysis for quality of life impairment. This European Scleroderma Trials and Research (EUSTAR) database analysis was undertaken to examine the importance of impaired functionality in dcSSc prognosis. The primary objectives were to identify predictors of death and HAQ-DI score progression over 1 year. HAQ-DI score, major advanced organ involvement, and death rate were also used to develop a comprehensive model to predict lifetime dcSSc progression. METHODS: This was an observational, longitudinal study in patients with dcSSc registered in EUSTAR. Death and HAQ-DI scores were, respectively, analyzed by Cox regression and linear regression analyses in relation to baseline covariates. A microsimulation Markov model was developed to estimate/predict natural progression of dcSSc over a patient's lifetime. RESULTS: The analysis included dcSSc patients with (N = 690) and without (N = 4132) HAQ-DI score assessments from the EUSTAR database. Baseline HAQ-DI score, corticosteroid treatment, and major advanced organ involvement were predictive of death on multivariable analysis; a 1-point increase in baseline HAQ-DI score multiplied the risk of death by 2.7 (p &lt; &nbsp;0.001) and multiple advanced major organ involvement multiplied the risk of death by 2.8 (p &lt; &nbsp;0.05). Multivariable analysis showed that baseline modified Rodnan Skin Score (mRSS) and baseline HAQ-DI score were associated with HAQ-DI score progression at 1 year (p &lt; &nbsp;0.05), but there was no association between baseline organ involvement and HAQ-DI score progression at 1 year. HAQ-DI score, major advanced organ involvement, and death were successfully used to model long-term disease progression in dcSSc. CONCLUSIONS: HAQ-DI score and major advanced organ involvement were comparable predictors of mortality risk in dcSSc. Baseline mRSS and baseline HAQ-DI score were predictive of HAQ-DI score progression at 1 year, indicating a correlation between these endpoints in monitoring disease progression. It is hoped that this EUSTAR analysis may change physician perception about the importance of the HAQ-DI score in dcSSc
    corecore