580 research outputs found

    Special issue: Illuminating occupations at the heart of social problems

    Get PDF
    As this special issue of the Journal of Occupational Science goes to press, the timing seems particularly pertinent to consider the intersection between how society and the rise of social problems impact upon and are influenced by the occupational lives that people, as individuals and collectives, lead. It seems that in all domains of life - work, school, home, leisure, and others - people are having to navigate the challenges of adapting their current occupations or adapting to new occupations as they seek to maintain the health and well-being of themselves and those around them. It is in times of such uncertainty that the complexity of occupation, as central to social life, becomes more visible to a range of societal actors. Drawing on liberatory pedagogical theory in occupation-based learning, Simaan illuminates a classroom activity using his research on occupations associated with olive growing in Palestine

    Fermi-surface transformation across the pseudogap critical point of the cuprate superconductor La1.6−x_{1.6-x}Nd0.4_{0.4}Srx_{x}CuO4_4

    Get PDF
    The electrical resistivity ρ\rho and Hall coefficient RH_H of the tetragonal single-layer cuprate Nd-LSCO were measured in magnetic fields up to H=37.5H = 37.5 T, large enough to access the normal state at T→0T \to 0, for closely spaced dopings pp across the pseudogap critical point at p⋆=0.235p^\star = 0.235. Below p⋆p^\star, both coefficients exhibit an upturn at low temperature, which gets more pronounced with decreasing pp. Taken together, these upturns show that the normal-state carrier density nn at T=0T = 0 drops upon entering the pseudogap phase. Quantitatively, it goes from n=1+pn = 1 + p at p=0.24p = 0.24 to n=pn = p at p=0.20p = 0.20. By contrast, the mobility does not change appreciably, as revealed by the magneto-resistance. The transition has a width in doping and some internal structure, whereby RH_H responds more slowly than ρ\rho to the opening of the pseudogap. We attribute this difference to a Fermi surface that supports both hole-like and electron-like carriers in the interval 0.2<p<p⋆0.2 < p < p^\star, with compensating contributions to RH_H. Our data are in excellent agreement with recent high-field data on YBCO and LSCO. The quantitative consistency across three different cuprates shows that a drop in carrier density from 1+p1 + p to pp is a universal signature of the pseudogap transition at T=0T=0. We discuss the implication of these findings for the nature of the pseudogap phase.Comment: 11 pages, 12 figure

    The ecological boundaries of six Carolina bays: Community composition and ecotone distribution

    Get PDF
    Community and environmental gradients within the ecological boundaries of Carolina bay wetlands may provide important information on the interaction between Carolina bays and associated uplands, and may also provide guidance for improved management. We established twelve 30-m transects on the sloping rims of each of six Carolina bays in northeastern South Carolina to characterize the community gradient, as well as important environmental factors producing this gradient. Mid-points of the transects were placed on jurisdictional wetland boundaries. Hydrology, soil properties, and plant species composition were measured within these transects. On average, transects included an elevation change of 0.6 m that corresponded with gradients of hydrology, soil properties, and community characteristics. Decreasing surface soil moisture (i.e., fewer flood events) and decreasing soil nutrients were associated with a shift from shrub-bog vegetation with relatively low alpha diversity and prominence of evergreens to a relatively diverse and heterogeneous community characterized by grasses, herbs, low shrubs, and vines. Ecotones, identified by abrupt changes in community composition, were more frequently found outside jurisdictional wetland boundaries. Likewise, five near-endemic and endemic plant species were found outside the wetland boundaries. Our data reinforce the need for better understanding of how Carolina bays interact with adjacent landscape elements, and specifically how ecological boundaries are influenced by this interaction

    Evidence for a small hole pocket in the Fermi surface of underdoped YBa2Cu3Oy

    Full text link
    The Fermi surface of a metal is the fundamental basis from which its properties can be understood. In underdoped cuprate superconductors, the Fermi surface undergoes a reconstruction that produces a small electron pocket, but whether there is another, as yet undetected portion to the Fermi surface is unknown. Establishing the complete topology of the Fermi surface is key to identifying the mechanism responsible for its reconstruction. Here we report the discovery of a second Fermi pocket in underdoped YBa2Cu3Oy, detected as a small quantum oscillation frequency in the thermoelectric response and in the c-axis resistance. The field-angle dependence of the frequency demonstrates that it is a distinct Fermi surface and the normal-state thermopower requires it to be a hole pocket. A Fermi surface consisting of one electron pocket and two hole pockets with the measured areas and masses is consistent with a Fermi-surface reconstruction caused by the charge-density-wave order observed in YBa2Cu3Oy, provided other parts of the reconstructed Fermi surface are removed by a separate mechanism, possibly the pseudogap.Comment: 23 pages, 5 figure
    • 

    corecore