359 research outputs found

    Case study of a critically ill person with COVID-19 on ECMO successfully treated with leronlimab

    Get PDF
    The number of confirmed cases of infection with SARS-CoV-2, the virus causing Coronavirus disease 2019 (COVID-19), continues to increase and is associated with substantial morbidity and mortality in virtually every country in the world. Although in the long-term mass vaccinations remains the most promising approach to control the pandemic, evidence suggests that new variants of the virus have emerged that may be able to evade the immune responses triggered by current vaccines. Therefore despite the recent approval of a number of SARS-CoV-2 vaccines there remains considerable urgency for effective treatments for COVID-19. Severe-to-critical COVID-19 has been shown to be associated with a dysregulated host immune response to SARS-CoV-2 with elevated levels of C–C chemokine receptor type 5 (CCR5) ligands including chemokine C–C ligands 3, 4, 5, as well as interleukins 6 and 10. Leronlimab, a CCR5-specific humanised IgG4 monoclonal antibody originally developed for the treatment of HIV has been studied for the treatment of COVID-19. In the TEMPEST trial which compared leronlimab to placebo in subjects with mild-to-moderate COVID-19, a post hoc analysis showed that leronlimab led to improvements from baseline in National Early Warning Score 2 (NEWS2) at Day 14 in the sub-set of people with more severe disease. Data has also been released on a further ongoing, randomized, placebo-controlled phase 3 registrational trial of leronlimab in 394 people with severe-to-critical COVID-19. The results show that Day 28 mortality was reduced (P ​= ​0.0319) in the subset of participants receiving leronlimab plus other pre-specified commonly used COVID-19 treatments including dexamethasone administered as part of their standard of care (SOC) compared to participants receiving placebo plus other pre-specified commonly used COVID-19 treatments including dexamethasone as part of their SOC. Several cases have recently been reported demonstrated that treatment with leronlimab restores immune function and achieves clinical improvement in people with critical COVID-19. Here we report on a further case of a critically ill person who was treated with leronlimab. This person had been on extracorporeal membrane oxygenation (ECMO) for an extended period of time before receiving 4 doses of leronlimab. The male subject received his first dose of leronlimab on Day 79 of hospitalization he was weaned off ECMO by Day 84 and discharged from the ECMO intensive care unit on Day 91

    The arterial switch operation : going back to the roots

    Get PDF
    The main goal of this thesis is to investigate the possible factors playing a role in dilatation of the neo-aortic root in patients after ASO for TGA. Basic histological research as well as histological 3D reconstruction of the arterial roots has been combined with clinical investigation. The studies that resulted from this research form the basis of this thesis. We went __back to the roots__.Johnson&Johnson Medical BV, Krijnen Medical BV, Maquet Netherlands BV, Sorin Group Nederland BV, St. Jude Medical Nederland BVUBL - phd migration 201

    14-Hy­droxy-11-[(E)-4-meth­oxy­benzyl­idene]-8-(4-meth­oxy­phen­yl)-5-thia-3,13-diaza­hepta­cyclo­[13.7.1.19,13.02,9.02,14.03,7.019,23]tetra­cosa-1(22),15(23),16,18,20-pentaen-10-one

    Get PDF
    In the title compound, C36H32N2O4S, the piperidine ring adopts a chair conformation, while the five-membered pyrrolidine (with a C atom as the flap atom) and thia­zolidine (with the S atom as the flap atom) rings adopt envelope conformations. The naphthalene ring system makes dihedral angles of 18.82 (5) and 40.92 (5)° with the two meth­oxy-substituted benzene rings. In the crystal, centrosymmetrically-related mol­ecules are linked into dimers via pairs of C—H⋯O and C—H⋯N hydrogen bonds. An intra­molecular O—H⋯N hydrogen bond is also observed. The crystal structure is further stabilized by C—H⋯π inter­actions

    PD-1T TILs as a predictive biomarker for clinical benefit to PD-1 blockade in patients with advanced NSCLC

    Full text link
    PURPOSE Durable clinical benefit to PD-1 blockade in NSCLC is currently limited to a small fraction of patients, underlining the need for predictive biomarkers. We recently identified a tumor-reactive tumor-infiltrating T lymphocyte (TIL) pool, termed PD-1T TILs, with predictive potential in NSCLC. Here, we examined PD-1T TILs as biomarker in NSCLC. EXPERIMENTAL DESIGN PD-1T TILs were digitally quantified in120 baseline samples from advanced NSCLC patients treated with PD-1 blockade. Primary outcome was Disease Control (DC) at 6 months. Secondary outcomes were DC at 12 months and survival. Exploratory analyses addressed the impact of lesion-specific responses, tissue sample properties and combination with other biomarkers on the predictive value of PD-1T TILs. RESULTS PD-1T TILs as a biomarker reached 77% sensitivity and 67% specificity at 6 months, and 93% and 65% at 12 months, respectively. Particularly, a patient group without clinical benefit was reliably identified, indicated by a high negative predictive value (NPV) (88% at 6 months, 98% at 12 months). High PD-1T TILs related to significantly longer progression-free (HR 0.39, 95% CI: 0.24-0.63, p<0.0001) and overall survival (HR 0.46, 95% CI: 0.28-0.76, p<0.01). Predictive performance was increased when lesion-specific responses and samples obtained immediately before treatment were assessed. Notably, the predictive performance of PD-1TTILs was superior to PD-L1 and TLS in the same cohort. CONCLUSIONS This study established PD-1T TILs as predictive biomarker for clinical benefit to PD-1 blockade in advanced NSCLC patients. Most importantly, the high NPV demonstrates an accurate identification of a patient group without benefit

    Comparison of the Safety and Pharmacokinetics of ST-246® after IV Infusion or Oral Administration in Mice, Rabbits and Monkeys

    Get PDF
    ST-246® is an antiviral, orally bioavailable small molecule in clinical development for treatment of orthopoxvirus infections. An intravenous (IV) formulation may be required for some hospitalized patients who are unable to take oral medication. An IV formulation has been evaluated in three species previously used in evaluation of both efficacy and toxicology of the oral formulation. plasma concentrations. These effects were eliminated using slower IV infusions. associated toxicity. Shorter infusions at higher doses in NHP resulted in decreased clearance, suggesting saturated distribution or elimination. Elimination half-lives in all species were similar between oral and IV administration. The administration of ST-246 was well tolerated as a slow IV infusion

    Direct Binding of a Hepatitis C Virus Inhibitor to the Viral Capsid Protein

    Get PDF
    Over 130 million people are infected chronically with hepatitis C virus (HCV), which, together with HBV, is the leading cause of liver disease. Novel small molecule inhibitors of Hepatitis C virus (HCV) are needed to complement or replace current treatments based on pegylated interferon and ribavirin, which are only partially successful and plagued with side-effects. Assembly of the virion is initiated by the oligomerization of core, the capsid protein, followed by the interaction with NS5A and other HCV proteins. By screening for inhibitors of core dimerization, we previously discovered peptides and drug-like compounds that disrupt interactions between core and other HCV proteins, NS3 and NS5A, and block HCV production. Here we report that a biotinylated derivative of SL209, a prototype small molecule inhibitor of core dimerization (IC50 of 2.80 µM) that inhibits HCV production with an EC50 of 3.20 µM, is capable of penetrating HCV-infected cells and tracking with core. Interaction between the inhibitors, core and other viral proteins was demonstrated by SL209–mediated affinity-isolation of HCV proteins from lysates of infected cells, or of the corresponding recombinant HCV proteins. SL209-like inhibitors of HCV core may form the basis of novel treatments of Hepatitis C in combination with other target-specific HCV drugs such as inhibitors of the NS3 protease, the NS5B polymerase, or the NS5A regulatory protein. More generally, our work supports the hypothesis that inhibitors of viral capsid formation might constitute a new class of potent antiviral agents, as was recently also shown for HIV capsid inhibitors

    Viral and Cell Cycle–Regulated Kinases in Cytomegalovirus-Induced Pseudomitosis and Replication

    Get PDF
    A process of pseudomitosis occurs during human cytomegalovirus infection that appears similar to cellular mitosis but involves the formation of multiple spindle poles, abnormal condensation, and mislocalization of chromosomal DNA. The relationship of this process to viral replication and cell cycle regulation during infection has been poorly understood. Pseudomitosis consistently peaks at late times of infection in all viral strains examined but at overall highest frequencies (30% to 35% of cells) using one common laboratory strain variant (AD169varATCC). Cyclin-dependent kinase 1 (Cdk1) plays a crucial role in pseudomitosis, mirroring its role in conventional mitosis. Dominant negative Cdk1 inhibits and wild-type Cdk1 stimulates this process; however, viral yields remain the same regardless of pseudomitosis levels. Broad inhibition of cell cycle−regulated kinases (Cdk1/Cdk2/Cdk5/Cdk9) with indirubin-3′-monoxime substantially decreases viral yields and synergizes with the viral UL97 kinase inhibitor, maribavir. Thus, Cdk1 is necessary and sufficient to drive pseudomitosis, whereas a combination of viral and cell cycle−regulated kinases is important during viral replication

    Antiviral therapies against Ebola and other emerging viral diseases using existing medicines that block virus entry

    Get PDF
    Emerging viral diseases pose a threat to the global population as intervention strategies are mainly limited to basic containment due to the lack of efficacious and approved vaccines and antiviral drugs. The former was the only available intervention when the current unprecedented Ebolavirus (EBOV) outbreak in West Africa began. Prior to this, the development of EBOV vaccines and anti-viral therapies required time and resources that were not available. Therefore, focus has turned to re-purposing of existing, licenced medicines that may limit the morbidity and mortality rates of EBOV and could be used immediately. Here we test three such medicines and measure their ability to inhibit pseudotype viruses (PVs) of two EBOV species, Marburg virus (MARV) and avian influenza H5 (FLU-H5). We confirm the ability of chloroquine (CQ) to inhibit viral entry in a pH specific manner. The commonly used proton pump inhibitors, Omeprazole and Esomeprazole were also able to inhibit entry of all PVs tested but at higher drug concentrations than may be achieved in vivo. We propose CQ as a priority candidate to consider for treatment of EBOV

    Histone Deacetylase Inhibitor Romidepsin Induces HIV Expression in CD4 T Cells from Patients on Suppressive Antiretroviral Therapy at Concentrations Achieved by Clinical Dosing

    Get PDF
    Persistent latent reservoir of replication-competent proviruses in memory CD4 T cells is a major obstacle to curing HIV infection. Pharmacological activation of HIV expression in latently infected cells is being explored as one of the strategies to deplete the latent HIV reservoir. In this study, we characterized the ability of romidepsin (RMD), a histone deacetylase inhibitor approved for the treatment of T-cell lymphomas, to activate the expression of latent HIV. In an in vitro T-cell model of HIV latency, RMD was the most potent inducer of HIV (EC50 = 4.5 nM) compared with vorinostat (VOR; EC50 = 3,950 nM) and other histone deacetylase (HDAC) inhibitors in clinical development including panobinostat (PNB; EC50 = 10 nM). The HIV induction potencies of RMD, VOR, and PNB paralleled their inhibitory activities against multiple human HDAC isoenzymes. In both resting and memory CD4 T cells isolated from HIV-infected patients on suppressive combination antiretroviral therapy (cART), a 4-hour exposure to 40 nM RMD induced a mean 6-fold increase in intracellular HIV RNA levels, whereas a 24-hour treatment with 1 μM VOR resulted in 2- to 3-fold increases. RMD-induced intracellular HIV RNA expression persisted for 48 hours and correlated with sustained inhibition of cell-associated HDAC activity. By comparison, the induction of HIV RNA by VOR and PNB was transient and diminished after 24 hours. RMD also increased levels of extracellular HIV RNA and virions from both memory and resting CD4 T-cell cultures. The activation of HIV expression was observed at RMD concentrations below the drug plasma levels achieved by doses used in patients treated for T-cell lymphomas. In conclusion, RMD induces HIV expression ex vivo at concentrations that can be achieved clinically, indicating that the drug may reactivate latent HIV in patients on suppressive cART

    In Vitro Characterization of a Nineteenth-Century Therapy for Smallpox

    Get PDF
    In the nineteenth century, smallpox ravaged through the United States and Canada. At this time, a botanical preparation, derived from the carnivorous plant Sarracenia purpurea, was proclaimed as being a successful therapy for smallpox infections. The work described characterizes the antipoxvirus activity associated with this botanical extract against vaccinia virus, monkeypox virus and variola virus, the causative agent of smallpox. Our work demonstrates the in vitro characterization of Sarracenia purpurea as the first effective inhibitor of poxvirus replication at the level of early viral transcription. With the renewed threat of poxvirus-related infections, our results indicate Sarracenia purpurea may act as another defensive measure against Orthopoxvirus infections
    • …
    corecore