277 research outputs found

    Simultaneous X-ray, gamma-ray, and Radio Observations of the repeating Fast Radio Burst FRB 121102

    Full text link
    We undertook coordinated campaigns with the Green Bank, Effelsberg, and Arecibo radio telescopes during Chandra X-ray Observatory and XMM-Newton observations of the repeating fast radio burst FRB 121102 to search for simultaneous radio and X-ray bursts. We find 12 radio bursts from FRB 121102 during 70 ks total of X-ray observations. We detect no X-ray photons at the times of radio bursts from FRB 121102 and further detect no X-ray bursts above the measured background at any time. We place a 5σ\sigma upper limit of 3×10113\times10^{-11} erg cm2^{-2} on the 0.5--10 keV fluence for X-ray bursts at the time of radio bursts for durations <700<700 ms, which corresponds to a burst energy of 4×10454\times10^{45} erg at the measured distance of FRB 121102. We also place limits on the 0.5--10 keV fluence of 5×10105\times10^{-10} erg cm2^{-2} and 1×1091\times10^{-9} erg cm2^{-2} for bursts emitted at any time during the XMM-Newton and Chandra observations, respectively, assuming a typical X-ray burst duration of 5 ms. We analyze data from the Fermi Gamma-ray Space Telescope Gamma-ray Burst Monitor and place a 5σ\sigma upper limit on the 10--100 keV fluence of 4×1094\times10^{-9} erg cm2^{-2} (5×10475\times10^{47} erg at the distance of FRB 121102) for gamma-ray bursts at the time of radio bursts. We also present a deep search for a persistent X-ray source using all of the X-ray observations taken to date and place a 5σ\sigma upper limit on the 0.5--10 keV flux of 4×10154\times10^{-15} erg s1^{-1} cm2^{-2} (3×10413\times10^{41} erg~s1^{-1} at the distance of FRB 121102). We discuss these non-detections in the context of the host environment of FRB 121102 and of possible sources of fast radio bursts in general.Comment: 13 pages, 5 figures, published in Ap

    Detection of Bursts from FRB 121102 with the Effelsberg 100-m Radio Telescope at 5 GHz and the Role of Scintillation

    Get PDF
    FRB 121102, the only repeating fast radio burst (FRB) known to date, was discovered at 1.4 GHz and shortly after the discovery of its repeating nature, detected up to 2.4 GHz. Here we present three bursts detected with the 100-m Effelsberg radio telescope at 4.85 GHz. All three bursts exhibited frequency structure on broad and narrow frequency scales. Using an autocorrelation function analysis, we measured a characteristic bandwidth of the small-scale structure of 6.4±\pm1.6 MHz, which is consistent with the diffractive scintillation bandwidth for this line of sight through the Galactic interstellar medium (ISM) predicted by the NE2001 model. These were the only detections in a campaign totaling 22 hours in 10 observing epochs spanning five months. The observed burst detection rate within this observation was inconsistent with a Poisson process with a constant average occurrence rate; three bursts arrived in the final 0.3 hr of a 2 hr observation on 2016 August 20. We therefore observed a change in the rate of detectable bursts during this observation, and we argue that boosting by diffractive interstellar scintillations may have played a role in the detectability. Understanding whether changes in the detection rate of bursts from FRB 121102 observed at other radio frequencies and epochs are also a product of propagation effects, such as scintillation boosting by the Galactic ISM or plasma lensing in the host galaxy, or an intrinsic property of the burst emission will require further observations.Comment: Accepted to ApJ. Minor typos correcte

    Modulation of LISA free-fall orbits due to the Earth-Moon system

    Full text link
    We calculate the effect of the Earth-Moon (EM) system on the free-fall motion of LISA test masses. We show that the periodic gravitational pulling of the EM system induces a resonance with fundamental frequency 1 yr^-1 and a series of periodic perturbations with frequencies equal to integer harmonics of the synodic month (9.92 10^-7 Hz). We then evaluate the effects of these perturbations (up to the 6th harmonics) on the relative motions between each test masses couple, finding that they range between 3mm and 10pm for the 2nd and 6th harmonic, respectively. If we take the LISA sensitivity curve, as extrapolated down to 10^-6 Hz, we obtain that a few harmonics of the EM system can be detected in the Doppler data collected by the LISA space mission. This suggests that the EM system gravitational near field could provide an absolute calibration for the LISA sensitivity at very low frequencies.Comment: 15 pages, 5 figure

    Multi-wavelength view of the close-by GRB~190829A sheds light on gamma-ray burst physics

    Get PDF
    Gamma-ray bursts are produced as a result of cataclysmic events such as the collapse of a massive star or the merger of two neutron stars. We monitored the position of the close-by gamma-ray burst GRB~190829A, which originated from a massive star collapse, through very long baseline interferometry (VLBI) observations with the EVN and the VLBA, involving a total of 30 telescopes across 4 continents. We carried out a total of 9 observations between 9 and 117 days after the gamma-ray burst at 5 and 15 GHz, with a typical resolution of few milliarcseconds (mas). We obtained limits on the source size and expansion rate. The limits are in agreement with the size evolution entailed by a detailed modelling of the multi-wavelength light curves with a forward plus reverse shock model, which agrees with the observations across almost 18 orders of magnitude in frequency (including the High Energy Stereoscopic System data at TeV photon energies) and more than 4 orders of magnitude in time. Thanks to the broad, high-cadence coverage of the afterglow, afterglow degeneracies are broken to a large extent, allowing us to capture some unique physical insights: we find a low prompt emission efficiency 103\lesssim 10^{-3}; we constrain the fraction of electrons that are accelerated to relativistic speeds in the forward shock to be χe<13%\chi_e<13\% at the 90\% credible level; we find that the magnetic field energy density in the reverse shock downstream must decay rapidly after the shock crossing. While our model assumes an on-axis jet, our VLBI astrometric measurements alone are not sufficiently tight as to exclude any off-axis viewing angle. On the other hand, we can firmly exclude the line of sight to have been more than 2deg2\,\mathrm{deg} away from the border of the region that produced the prompt gamma-ray emission based on compactness arguments.Comment: 35 pages, 30 figures, submitted to Nature Astronomy (first revision). The tentative evidence for source size evolution in the previous version was an artifact - the source is consistently unresolved in the updated analysis. Changes highlighted in boldfac

    Detection of very high energy gamma-ray emission from the gravitationally-lensed blazar QSO B0218+357 with the MAGIC telescopes

    Get PDF
    Context. QSO B0218+357 is a gravitationally lensed blazar located at a redshift of 0.944. The gravitational lensing splits the emitted radiation into two components, spatially indistinguishable by gamma-ray instruments, but separated by a 10-12 day delay. In July 2014, QSO B0218+357 experienced a violent flare observed by the Fermi-LAT and followed by the MAGIC telescopes. Aims. The spectral energy distribution of QSO B0218+357 can give information on the energetics of z ~ 1 very high energy gamma- ray sources. Moreover the gamma-ray emission can also be used as a probe of the extragalactic background light at z ~ 1. Methods. MAGIC performed observations of QSO B0218+357 during the expected arrival time of the delayed component of the emission. The MAGIC and Fermi-LAT observations were accompanied by quasi-simultaneous optical data from the KVA telescope and X-ray observations by Swift-XRT. We construct a multiwavelength spectral energy distribution of QSO B0218+357 and use it to model the source. The GeV and sub-TeV data, obtained by Fermi-LAT and MAGIC, are used to set constraints on the extragalactic background light. Results. Very high energy gamma-ray emission was detected from the direction of QSO B0218+357 by the MAGIC telescopes during the expected time of arrival of the trailing component of the flare, making it the farthest very high energy gamma-ray sources detected to date. The observed emission spans the energy range from 65 to 175 GeV. The combined MAGIC and Fermi-LAT spectral energy distribution of QSO B0218+357 is consistent with current extragalactic background light models. The broad band emission can be modeled in the framework of a two zone external Compton scenario, where the GeV emission comes from an emission region in the jet, located outside the broad line region.Comment: 11 pages, 6 figures, accepted for publication in A&

    The major upgrade of the MAGIC telescopes, Part II: A performance study using observations of the Crab Nebula

    Get PDF
    MAGIC is a system of two Imaging Atmospheric Cherenkov Telescopes located in the Canary island of La Palma, Spain. During summer 2011 and 2012 it underwent a series of upgrades, involving the exchange of the MAGIC-I camera and its trigger system, as well as the upgrade of the readout system of both telescopes. We use observations of the Crab Nebula taken at low and medium zenith angles to assess the key performance parameters of the MAGIC stereo system. For low zenith angle observations, the standard trigger threshold of the MAGIC telescopes is ~50GeV. The integral sensitivity for point-like sources with Crab Nebula-like spectrum above 220GeV is (0.66+/-0.03)% of Crab Nebula flux in 50 h of observations. The angular resolution, defined as the sigma of a 2-dimensional Gaussian distribution, at those energies is < 0.07 degree, while the energy resolution is 16%. We also re-evaluate the effect of the systematic uncertainty on the data taken with the MAGIC telescopes after the upgrade. We estimate that the systematic uncertainties can be divided in the following components: < 15% in energy scale, 11-18% in flux normalization and +/-0.15 for the energy spectrum power-law slope.Comment: 21 pages, 25 figures, accepted for publication in Astroparticle Physic

    First broadband characterization and redshift determination of the VHE blazar MAGIC J2001+439

    Full text link
    We aim to characterize the broadband emission from 2FGL J2001.1+4352, which has been associated with the unknown-redshift blazar MG4 J200112+4352. Based on its gamma-ray spectral properties, it was identified as a potential very high energy (VHE; E > 100 GeV) gamma-ray emitter. The source was observed with MAGIC first in 2009 and later in 2010 within a multi-instrument observation campaign. The MAGIC observations yielded 14.8 hours of good quality stereoscopic data. The object was monitored at radio, optical and gamma-ray energies during the years 2010 and 2011. The source, named MAGIC J2001+439, is detected for the first time at VHE with MAGIC at a statistical significance of 6.3 {\sigma} (E > 70 GeV) during a 1.3-hour long observation on 2010 July 16. The multi-instrument observations show variability in all energy bands with the highest amplitude of variability in the X-ray and VHE bands. We also organized deep imaging optical observations with the Nordic Optical Telescope in 2013 to determine the source redshift. We determine for the first time the redshift of this BL Lac object through the measurement of its host galaxy during low blazar activity. Using the observational evidence that the luminosities of BL Lac host galaxies are confined to a relatively narrow range, we obtain z = 0.18 +/- 0.04. Additionally, we use the Fermi-LAT and MAGIC gamma-ray spectra to provide an independent redshift estimation, z = 0.17 +/- 0.10. Using the former (more accurate) redshift value, we adequately describe the broadband emission with a one-zone SSC model for different activity states and interpret the few-day timescale variability as produced by changes in the high-energy component of the electron energy distribution.Comment: 17 pages, 15 figures, Accepted for publication in A&

    Long-term multi-wavelength variability and correlation study of Markarian 421 from 2007 to 2009

    Get PDF
    We study the multi-band variability and correlations of the TeV blazar Mrk 421 on year time scales, which can bring additional insight on the processes responsible for its broadband emission. We observed Mrk 421 in the very high energy (VHE) gamma-ray range with the Cherenkov telescope MAGIC-I from March 2007 to June 2009 for a total of 96 hours of effective time after quality cuts. The VHE flux variability is quantified with several methods, including the Bayesian Block algorithm, which is applied to data from Cherenkov telescopes for the first time. The 2.3 year long MAGIC light curve is complemented with data from the Swift/BAT and RXTE/ASM satellites and the KVA, GASP-WEBT, OVRO, and Mets\"ahovi telescopes from February 2007 to July 2009, allowing for an excellent characterisation of the multi-band variability and correlations over year time scales. Mrk 421 was found in different gamma-ray emission states during the 2.3 year long observation period. Flares and different levels of variability in the gamma-ray light curve could be identified with the Bayesian Block algorithm. The same behaviour of a quiet and active emission was found in the X-ray light curves measured by Swift/BAT and the RXTE/ASM, with a direct correlation in time. The behaviour of the optical light curve of GASP-WEBT and the radio light curves by OVRO and Mets\"ahovi are different as they show no coincident features with the higher energetic light curves and a less variable emission. The fractional variability is overall increasing with energy. The comparable variability in the X-ray and VHE bands and their direct correlation during both high- and low-activity periods spanning many months show that the electron populations radiating the X-ray and gamma-ray photons are either the same, as expected in the Synchrotron-Self-Compton mechanism, or at least strongly correlated, as expected in electromagnetic cascades.Comment: Corresponding authors: Ann-Kristin Overkemping ([email protected]), Marina Manganaro ([email protected]), Diego Tescaro ([email protected]), To be published in Astronomy&Astrophysics (A&A), 12 pages, 9 figure

    Investigating the peculiar emission from the new VHE gamma-ray source H1722+119

    Get PDF
    The MAGIC (Major Atmospheric Gamma-ray Imaging Cherenkov) telescopes observed the BL Lac object H1722+119 (redshift unknown) for six consecutive nights between 2013 May 17 and 22, for a total of 12.5 h. The observations were triggered by high activity in the optical band measured by the KVA (Kungliga Vetenskapsakademien) telescope. The source was for the first time detected in the very high energy (VHE, E>100E > 100 GeV) γ\gamma-ray band with a statistical significance of 5.9 σ\sigma. The integral flux above 150 GeV is estimated to be (2.0±0.5)(2.0\pm 0.5) per cent of the Crab Nebula flux. We used contemporaneous high energy (HE, 100 MeV <E<100 < E < 100 GeV) γ\gamma-ray observations from Fermi-LAT (Large Area Telescope) to estimate the redshift of the source. Within the framework of the current extragalactic background light models, we estimate the redshift to be z=0.34±0.15z = 0.34 \pm 0.15. Additionally, we used contemporaneous X-ray to radio data collected by the instruments on board the Swift satellite, the KVA, and the OVRO (Owens Valley Radio Observatory) telescope to study multifrequency characteristics of the source. We found no significant temporal variability of the flux in the HE and VHE bands. The flux in the optical and radio wavebands, on the other hand, did vary with different patterns. The spectral energy distribution (SED) of H1722+119 shows surprising behaviour in the 3×10141018\sim 3\times10^{14} - 10^{18} Hz frequency range. It can be modelled using an inhomogeneous helical jet synchrotron self-Compton model.Comment: 12 pages, 5 figures, 2 table
    corecore