490 research outputs found
Model Based Mission Assurance in a Model Based Systems Engineering (MBSE) Framework: State-of-the-Art Assessment
This report explores the current state of the art of Safety and Mission Assurance (S&MA) in projects that have shifted towards Model Based Systems Engineering (MBSE). Its goal is to provide insight into how NASA's Office of Safety and Mission Assurance (OSMA) should respond to this shift. In MBSE, systems engineering information is organized and represented in models: rigorous computer-based representations, which collectively make many activities easier to perform, less error prone, and scalable. S&MA practices must shift accordingly. The "Objective Structure Hierarchies" recently developed by OSMA provide the framework for understanding this shift. Although the objectives themselves will remain constant, S&MA practices (activities, processes, tools) to achieve them are subject to change. This report presents insights derived from literature studies and interviews. The literature studies gleaned assurance implications from reports of space-related applications of MBSE. The interviews with knowledgeable S&MA and MBSE personnel discovered concerns and ideas for how assurance may adapt. Preliminary findings and observations are presented on the state of practice of S&MA with respect to MBSE, how it is already changing, and how it is likely to change further. Finally, recommendations are provided on how to foster the evolution of S&MA to best fit with MBSE
Enabling Assurance in the MBSE Environment
A number of specific benefits that fit within the hallmarks of effective development are realized with implementation of model-based approaches to systems and assurance. Model Based Systems Engineering (MBSE) enabled by standardized modeling languages (e.g., SysML) is at the core. These benefits in the context of spaceflight system challenges can include: Improved management of complex development, Reduced risk in the development process, Improved cost management, Improved design decisions. With appropriate modeling techniques the assurance community can improve early oversight and insight into project development. NASA has shown the basic constructs of SysML in an MBSE environment offer several key advantages, within a Model Based Mission Assurance (MBMA) initiative
Analysis of the sign-dependent switching observed in a hybrid aligned nematic cell
Copyright © 2009 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft. This is the published version of an article published in New Journal of Physics Vol. 11, article 013045. DOI: 10.1088/1367-2630/11/1/013045An optical waveguide experiment was used to study the influence of dc electric fields on a hybrid aligned nematic liquid crystal cell. This dc switching differed from ac switching in two ways: first, the equilibrium states depended on the sign of the applied voltage, and second, there was transient activity over long (~100 ms) timescales. To understand both of these, a numerical model of the cell's dynamics, which included both the EricksenâLeslie theory and a drift-diffusion model of mobile ions, has been developed. Comparing modelling with observations, we find that the transients are caused by the motion of tiny concentrations of ionic impurities, and that the sign dependence is caused by an asymmetric distribution of surface charge, rather than the flexoelectric effect
Time-resolved sign-dependent switching in a hybrid aligned nematic liquid crystal cell
Copyright © 2008 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft. This is the published version of an article published in New Journal of Physics Vol. 10, article 083045. DOI: 10.1088/1367-2630/10/8/083045An optical waveguide technique is used to determine the director tilt profile across a hybrid aligned nematic (HAN) liquid crystal cell, in which the optical response is dependent on the sign of the applied voltage. Two physical models are shown that fit the equilibrium experimental data, but with alternative explanations for this sign dependence. Models with either a flexoelectric coefficient of 2.25Ă10â11 C mâ1 or a bound surface charge of 12.2 ÎŒC mâ2 are shown that fit this equilibrium data. In an attempt to resolve this degeneracy sign-dependent switching data are analysed. However, neither model can explain these switching data, which are affected by slow transients of ~100 ms which are believed to be due to the motion of free ions in the liquid crystal. From the form of these slow transients, it is suggested that the equilibrium position of the ions is next to a cell substrate
Dynamic control of visible radiation by a liquid crystal filled Fabry-PĂ©rot etalon
Copyright © 2007 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Journal of Applied Physics 102 (2007) and may be found at http://link.aip.org/link/?JAPIAU/102/093108/1A liquid crystal filled Fabry-Pérot etalon has been constructed to control the resonant transmission of electromagnetic radiation over the visible range of the spectrum. This has been achieved through the use of a 1.5 ”m thick homogeneously aligned liquid crystal layer in the core of a silver-clad etalon structure. Applying an electric field across the core reorientates the liquid crystal director and changes the refractive index for incident light polarized parallel to the rubbing direction. By measuring the transmitted intensity as a function of wavelength for a variety of applied voltages shifts in the positions of the resonant transmission modes of up to 80 nm have been observed. In addition, these results have been compared to model data generated using a multilayer optics model to obtain the dispersion of the liquid crystal over the visible range of the electromagnetic spectrum
Amundsen Sea Embayment ice-sheet mass-loss predictions to 2050 calibrated using observations of velocity and elevation change
Mass loss from the Amundsen Sea Embayment of the West Antarctic Ice Sheet is a major contributor to global sea-level rise (SLR) and has been increasing over recent decades. Predictions of future SLR are increasingly modelled using ensembles of simulations within which model parameters and external forcings are varied within credible ranges. Accurately reporting the uncertainty associated with these predictions is crucial in enabling effective planning for, and construction of defences against, rising sea levels. Calibrating model simulations against current observations of ice-sheet behaviour enables the uncertainty to be reduced. Here we calibrate an ensemble of BISICLES ice-sheet model simulations of ice loss from the Amundsen Sea Embayment using remotely sensed observations of surface elevation and ice speed. Each calibration type is shown to be capable of reducing the 90% credibility bounds of predicted contributions to SLR by 34 and 43% respectively
Fusing Quantitative Requirements Analysis with Model-based Systems Engineering
A vision is presented for fusing quantitative
requirements analysis with model-based systems
engineering. This vision draws upon and combines
emergent themes in the engineering milieu.
âRequirements engineeringâ provides means to
explicitly represent requirements (both functional and
non-functional) as constraints and preferences on
acceptable solutions, and emphasizes early-lifecycle
review, analysis and verification of design and
development plans. âDesign by shoppingâ emphasizes
revealing the space of options available from which to
choose (without presuming that all selection criteria
have previously been elicited), and provides means to
make understandable the range of choices and their
ramifications. âModel-based engineeringâ emphasizes
the goal of utilizing a formal representation of all
aspects of system design, from development through
operations, and provides powerful tool suites that
support the practical application of these principles.
A first step prototype towards this vision is
described, embodying the key capabilities.
Illustrations, implications, further challenges and
opportunities are outlined
Flow-driven transition and associated velocity profiles in a nematic liquid-crystal cell
S. A. Jewell, S. L. Cornford, F. Yang, P. S. Cann, and J. R. Sambles, Physical Review E, Vol. 80, article 041706 (2009) "Copyright © 2009 by the American Physical Society."The alignment properties and distribution of flow speed during Poiseuille flow through a microchannel of a nematic liquid crystal in a cell with homeotropic surface alignment has been measured using a combination of conoscopy, fluorescence confocal polarizing microscopy, and time-lapse imaging. Two topologically distinct director profiles, with associated fluid velocity fields, are found to exist with the preferred state dictated by the volumetric flow rate of the liquid crystal. The results show excellent agreement with model data produced using the Ericksen-Leslie nematodynamics theory
Impact of ocean forcing on the Aurora Basin in the 21st and 22nd centuries
The grounded ice in the Totten and Dalton glaciers is an essential component of the buttressing for the marine-based Aurora basin, and hence their stability is important to the future rate of mass loss from East Antarctica. Totten and Vanderford glaciers are joined by a deep east-west running subglacial trench between the continental ice sheet and Law Dome, while a shallower trench links the Totten and Dalton glaciers. All three glaciers flow into the ocean close to the Antarctic circle and experience ocean-driven ice shelf melt rates comparable with the Amundsen Sea Embayment. We investigate this combination of trenches and ice shelves with the BISICLES adaptive mesh ice-sheet model and ocean-forcing melt rates derived from two global climate models. We find that ice shelf ablation at a rate comparable with the present day is sufficient to cause widespread grounding line retreat in an east-west direction across Totten and Dalton glaciers, with projected future warming causing faster retreat. Meanwhile, southward retreat is limited by the shallower ocean facing slopes between the coast and the bulk of the Aurora sub-glacial trench. However the two climate models produce completely different future ice shelf basal melt rates in this region: HadCM3 drives increasing sub-ice shelf melting to ~2150, while ECHAM5 shows little or no increase in sub-ice shelf melting under the two greenhouse gas forcing scenarios
Adaptive mesh refinement versus subgrid friction interpolation in simulations of Antarctic ice dynamics
Geophysical Research Letters
- âŠ