132 research outputs found

    Slow Relaxation Process in Ising like Heisenberg Kagome Antiferromagnets due to Macroscopic Degeneracy in the Ordered State

    Full text link
    We study relaxation phenomena in the ferromagnetically ordered state of the Ising-like Heisenberg kagome antiferromagnets. We introduce the "weathervane loop" in order to characterize macroscopic degenerate ordered states and study the microscopic mechanism of the slow relaxation from a view point of the dynamics of the weathervane loop configuration. This mechanism may give a possible origin of the slow relaxation reported in recent experiments.Comment: 6pages, 4figures, HFM2006 proceeding

    Multiple mechanisms contribute to fluorometry signals from the voltage-gated proton channel

    Get PDF
    Abstract Voltage-clamp fluorometry (VCF) supplies information about the conformational changes of voltage-gated proteins. Changes in the fluorescence intensity of the dye attached to a part of the protein that undergoes a conformational rearrangement upon the alteration of the membrane potential by electrodes constitute the signal. The VCF signal is generated by quenching and dequenching of the fluorescence as the dye traverses various local environments. Here we studied the VCF signal generation, using the Hv1 voltage-gated proton channel as a tool, which shares a similar voltage-sensor structure with voltage-gated ion channels but lacks an ion-conducting pore. Using mutagenesis and lipids added to the extracellular solution we found that the signal is generated by the combined effects of lipids during movement of the dye relative to the plane of the membrane and by quenching amino acids. Our 3-state model recapitulates the VCF signals of the various mutants and is compatible with the accepted model of two major voltage-sensor movements

    Multiple mechanisms contribute to fluorometry signals from the voltage-gated proton channel

    Get PDF
    Voltage-clamp fluorometry (VCF) supplies information about the conformational changes of voltage-gated proteins. Changes in the fluorescence intensity of the dye attached to a part of the protein that undergoes a conformational rearrangement upon the alteration of the membrane potential by electrodes constitute the signal. The VCF signal is generated by quenching and dequenching of the fluorescence as the dye traverses various local environments. Here we studied the VCF signal generation, using the Hv1 voltage-gated proton channel as a tool, which shares a similar voltage-sensor structure with voltage-gated ion channels but lacks an ion-conducting pore. Using mutagenesis and lipids added to the extracellular solution we found that the signal is generated by the combined effects of lipids during movement of the dye relative to the plane of the membrane and by quenching amino acids. Our 3-state model recapitulates the VCF signals of the various mutants and is compatible with the accepted model of two major voltage-sensor movements

    Characteristics of COVID-19 cases and factors associated with their mortality in Katsina State, Nigeria, April-July 2020

    Get PDF
    Introduction: COVID-19 was first detected in Daura, Katsina State, Nigeria on 4 April 2020. We characterized the cases and outlined factors associated with mortality. Methods: We analysed the COVID-19 data downloaded from Surveillance Outbreak Response, Management and Analysis System between 4 April and 31 July 2020. We defined a case as any person with a positive SARS-CoV-2 test within that period. We described the cases in time, person, and place; calculated the crude and adjusted odds ratios and 95% confidence intervals for factors associated with mortality. Results: We analysed 744 confirmed cases (median age 35, range 1-90), 73% males and 24 deaths (Case fatality rate 3.2%, Attack rate 8.5/100,000). The outbreak affected 31 districts, started in week 14, peaked in week 26, and is ongoing. Highest proportion of cases in the age groups were 26.7% (184) in 30-39, 21.7% (153) in 20-29 years, and 18.3% (129) in 40-49 years. While the highest case fatality rates in the age groups were 35.7% in 70-79, 33.3% in 80-89 years, and 19.4% in 60-69 years. Factors associated with death were cough (AOR: 9.88, 95% CI: 1.29-75.79), age ≥60 years (AOR: 18.42, 95% CI: 7.48-45.38), and male sex (AOR: 4.4, 95% CI: 0.98-20.12). Conclusion: Male contacts below 40 years carried the burden of COVID-19. Also, persons 60 years and above, with cough have an increased risk of dying from COVID-19. Risk communication should advocate for use of preventive measures, protection of persons 60 years and above, and consideration of cough as a red-flag sign

    Comparison of endothelial progenitor cell function in type 2 diabetes with good and poor glycemic control

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Endothelial progenitor cells (EPCs) play an important role in vascular repair and a decrease in the number of EPCs is observed in type 2 diabetes. However, there is no report on the change of EPCs after glycemic control. This study therefore aimed to investigate the EPC number and function in patients with good and poor glycemic control.</p> <p>Methods</p> <p>The number of EPCs was studied using flow cytometry by co-expression of CD34 and VEGFR2. The EPCs were cultured and characterized by the expression of UEA-I, CD34, VEGFR2, vWF and Dil-Ac-LDL engulfment, as well as the ability to form capillary-like structures. An <it>in vitro </it>study on the effect of hyperglycemia on the proliferation and viability of the cultured EPCs was also performed.</p> <p>Results</p> <p>The number of EPCs in type 2 diabetes was significantly decreased compared with healthy controls and there was an inverse correlation between the EPC numbers and plasma glucose, as well as HbA1<sub>C</sub>. The number and function of EPCs in patients with good glycemic control were recovered compared with those with poor glycemic control. When glucose was supplemented in the culture <it>in vitro</it>, there was a negative effect on the proliferation and viability of EPCs, in a dose-dependent manner, whereas the enhancement of apoptosis was observed.</p> <p>Conclusion</p> <p>There was EPC dysfunction in type 2 diabetes which might be improved by strict glycemic control. However, the circulating EPC number and proliferative function in patients with good glycemic control did not reach the level in healthy controls.</p

    Hemorrhagic shock and encephalopathy syndrome – the markers for an early HSES diagnosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The hemorrhagic shock and encephalopathy syndrome (HSES) is a devastating disease that affects young children. The outcomes of HSES patients are often fatal or manifesting severe neurological sequelae. We reviewed the markers for an early diagnosis of HSES.</p> <p>Methods</p> <p>We examined the clinical, biological and radiological findings of 8 patients (4 months to 9 years old) who met the HSES criteria.</p> <p>Results</p> <p>Although cerebral edema, disseminated intravascular coagulopathy (DIC), and multiple organ failure were seen in all 8 cases during their clinical courses, brain computed tomography (CT) scans showed normal or only slight edema in 5 patients upon admission. All 8 patients had normal platelet counts, and none were in shock. However, they all had severe metabolic acidosis, which persisted even after 3 hours (median base excess (BE), -7.6 mmol/L). And at 6 hours after admission (BE, -5.7 mmol/L) they required mechanical ventilation. Within 12 hours after admission, fluid resuscitation and vasopressor infusion for hypotension was required. Seven of the patients had elevated liver enzymes and creatine kinase (CK) upon admission. Twenty-four hours after admission, all 8 patients needed vasopressor infusion to maintain blood pressure.</p> <p>Conclusion</p> <p>CT scan, platelet count, hemoglobin level and renal function upon admission are not useful for an early diagnosis of HSES. However, the elevated liver enzymes and CK upon admission, hypotension in the early stage after admission with refractory acid-base disturbance to fluid resuscitation and vasopressor infusion are useful markers for an early HSES diagnosis and helpful to indicate starting intensive neurological treatment.</p

    Analysis of exome data for 4293 trios suggests GPI-anchor biogenesis defects are a rare cause of developmental disorders.

    Get PDF
    Over 150 different proteins attach to the plasma membrane using glycosylphosphatidylinositol (GPI) anchors. Mutations in 18 genes that encode components of GPI-anchor biogenesis result in a phenotypic spectrum that includes learning disability, epilepsy, microcephaly, congenital malformations and mild dysmorphic features. To determine the incidence of GPI-anchor defects, we analysed the exome data from 4293 parent-child trios recruited to the Deciphering Developmental Disorders (DDD) study. All probands recruited had a neurodevelopmental disorder. We searched for variants in 31 genes linked to GPI-anchor biogenesis and detected rare biallelic variants in PGAP3, PIGN, PIGT (n=2), PIGO and PIGL, providing a likely diagnosis for six families. In five families, the variants were in a compound heterozygous configuration while in a consanguineous Afghani kindred, a homozygous c.709G>C; p.(E237Q) variant in PIGT was identified within 10-12 Mb of autozygosity. Validation and segregation analysis was performed using Sanger sequencing. Across the six families, five siblings were available for testing and in all cases variants co-segregated consistent with them being causative. In four families, abnormal alkaline phosphatase results were observed in the direction expected. FACS analysis of knockout HEK293 cells that had been transfected with wild-type or mutant cDNA constructs demonstrated that the variants in PIGN, PIGT and PIGO all led to reduced activity. Splicing assays, performed using leucocyte RNA, showed that a c.336-2A>G variant in PIGL resulted in exon skipping and p.D113fs*2. Our results strengthen recently reported disease associations, suggest that defective GPI-anchor biogenesis may explain ~0.15% of individuals with developmental disorders and highlight the benefits of data sharing

    Age-related loss of brain volume and T2 relaxation time in youth with Type 1 diabetes

    Get PDF
    OBJECTIVE: Childhood-onset type 1 diabetes is associated with neurocognitive deficits, but there is limited evidence to date regarding associated neuroanatomical brain changes and their relationship to illness variables such as age at disease onset. This report examines age-related changes in volume and T2 relaxation time (a fundamental parameter of magnetic resonance imaging that reflects tissue health) across the whole brain. RESEARCH DESIGN AND METHODS: Type 1 diabetes, N = 79 (mean age 20.32 ± 4.24 years), and healthy control participants, N = 50 (mean age 20.53 ± 3.60 years). There were no substantial group differences on socioeconomic status, sex ratio, or intelligence quotient. RESULTS: Regression analyses revealed a negative correlation between age and brain changes, with decreasing gray matter volume and T2 relaxation time with age in multiple brain regions in the type 1 diabetes group. In comparison, the age-related decline in the control group was small. Examination of the interaction of group and age confirmed a group difference (type 1 diabetes vs. control) in the relationship between age and brain volume/T2 relaxation time. CONCLUSIONS: We demonstrated an interaction between age and group in predicting brain volumes and T2 relaxation time such that there was a decline in these outcomes in type 1 diabetic participants that was much less evident in control subjects. Findings suggest the neurodevelopmental pathways of youth with type 1 diabetes have diverged from those of their healthy peers by late adolescence and early adulthood but the explanation for this phenomenon remains to be clarified
    corecore