748 research outputs found

    Quantum Monte Carlo Study of High Pressure Solid Molecular Hydrogen

    Full text link
    We use the diffusion quantum Monte Carlo (DMC) method to calculate the ground state phase diagram of solid molecular hydrogen and examine the stability of the most important insulating phases relative to metallic crystalline molecular hydrogen. We develop a new method to account for finite-size errors by combining the use of twist-averaged boundary conditions with corrections obtained using the Kwee-Zhang-Krakauer (KZK) functional in density functional theory. To study band-gap closure and find the metallization pressure, we perform accurate quasi-particle many-body calculations using the GWGW method. In the static approximation, our DMC simulations indicate a transition from the insulating Cmca-12 structure to the metallic Cmca structure at around 375 GPa. The GWGW band gap of Cmca-12 closes at roughly the same pressure. In the dynamic DMC phase diagram, which includes the effects of zero-point energy, the Cmca-12 structure remains stable up to 430 GPa, well above the pressure at which the GWGW band gap closes. Our results predict that the semimetallic state observed experimentally at around 360 GPa [Phys. Rev. Lett. {\bf 108}, 146402 (2012)] may correspond to the Cmca-12 structure near the pressure at which the band gap closes. The dynamic DMC phase diagram indicates that the hexagonal close packed P63/mP6_3/m structure, which has the largest band gap of the insulating structures considered, is stable up to 220 GPa. This is consistent with recent X-ray data taken at pressures up to 183 GPa [Phys. Rev. B {\bf 82}, 060101(R) (2010)], which also reported a hexagonal close packed arrangement of hydrogen molecules

    ADOPT: a tool for predicting adoption of agricultural innovations

    Get PDF
    A wealth of evidence exists about the adoption of new practices and technologies in agriculture but there does not appear to have been any attempt to simplify this vast body of research knowledge into a model to make quantitative predictions across a broad range of contexts. This is despite increasing demand from research, development and extension agencies for estimates of likely extent of adoption and the likely timeframes for project impacts. This paper reports on the reasoning underpinning the development of ADOPT (Adoption and Diffusion Outcome Prediction Tool). The tool has been designed to: 1) predict an innovation‘s likely peak extent of adoption and likely time for reaching that peak; 2) encourage users to consider the influence of a structured set of factors affecting adoption; and 3) engage R, D & E managers and practitioners by making adoptability knowledge and considerations more transparent and understandable. The tool is structured around four aspects of adoption: 1) characteristics of the innovation, 2) characteristics of the population, 3) actual advantage of using the innovation, and 4) learning of the actual advantage of the innovation. The conceptual framework used for developing ADOPT is described.Adoption, Diffusion, Prediction, Research and Development/Tech Change/Emerging Technologies,

    Top-down Attention Recurrent VLAD Encoding for Action Recognition in Videos

    Full text link
    Most recent approaches for action recognition from video leverage deep architectures to encode the video clip into a fixed length representation vector that is then used for classification. For this to be successful, the network must be capable of suppressing irrelevant scene background and extract the representation from the most discriminative part of the video. Our contribution builds on the observation that spatio-temporal patterns characterizing actions in videos are highly correlated with objects and their location in the video. We propose Top-down Attention Action VLAD (TA-VLAD), a deep recurrent architecture with built-in spatial attention that performs temporally aggregated VLAD encoding for action recognition from videos. We adopt a top-down approach of attention, by using class specific activation maps obtained from a deep CNN pre-trained for image classification, to weight appearance features before encoding them into a fixed-length video descriptor using Gated Recurrent Units. Our method achieves state of the art recognition accuracy on HMDB51 and UCF101 benchmarks.Comment: Accepted to the 17th International Conference of the Italian Association for Artificial Intelligenc

    The state of our art: Intergenerational program research and evaluation: Part two.

    Get PDF
    ABSTRACT. In this two-part paper, the author examines intergenerational program research and evaluation based on a framework derived from a collaborative UNESCO (2000)-sponsored review of the intergenerational program field. In Part One, conceptual foundations for intergenerational programming are considered, taking into account theories that focus on individuals and groups within interactive contexts, those that focus primarily on individual development, and conceptually based program evaluations. In Part Two, appearing in the next issue of this journal, effects of intergenerational program participation are described, with emphasis on program activities and various program contexts. Challenges and questions emerging from the literature are presented, identifying the need for a greater use of theory in research, more cross cultural research, expanded outcomes, and solutions to some of the methodological challenges in intergenerational program research and evaluation

    Tx/Rx Head Coil Induces Less RF Transmit-Related Heating than Body Coil in Conductive Metallic Objects Outside the Active Area of the Head Coil

    Get PDF
    The transmit–receive (Tx/Rx) birdcage head coil is often used for excitation instead of the body coil because of the presumably lower risk of heating in and around conductive implants. However, this common practice has not been systematically tested. To investigate whether the Tx/Rx birdcage head coil produces less heating than the body coil when scanning individuals with implants, we used a 3T clinical scanner and made temperature measurements around a straight 15 cm conductor using either the Tx/Rx body or the head coil for excitation. Additionally, the transmitted fields of a Tx/Rx head coil were measured both in air and in gel using a resonant and a non-resonant B field probes as well as a non-resonant E field probe. Simulations using a finite-difference time domain solver were compared with the experimental findings. When the body coil was used for excitation, we observed heating around the 15 cm wire at various anatomical locations (both within and outside of the active volume of the head coil). Outside its active area, no such heating was observed while using the Tx/Rx head coil for excitation. The E and B fields of the Tx/Rx birdcage head coil extended well-beyond the physical dimensions of the coil. In air, the fields were monotonically decreasing, while in gel they were more complex with local maxima at the end of the ASTM phantom. These experimental findings were line with the simulations. While caution must always be exercised when scanning individuals with metallic implants, these findings support the use of the Tx/Rx birdcage head coil in place of the body coil at 3T in order to reduce the risk of heating in and around conductive implants that are remote from the head coil

    Quantum Monte Carlo calculations of van der Waals interactions between aromatic benzene rings

    Get PDF
    The magnitude of finite-size effects and Coulomb interactions in quantum Monte Carlo simulations of van der Waals interactions between weakly bonded benzene molecules are investigated. To that extent, two trial wave functions of the Slater-Jastrow and Backflow-Slater-Jastrow types are employed to calculate the energy-volume equation of state. We assess the impact of the backflow coordinate transformation on the nonlocal correlation energy. We found that the effect of finite-size errors in quantum Monte Carlo calculations on energy differences is particularly large and may even be more important than the employed trial wave function. In addition to the cohesive energy, the singlet excitonic energy gap and the energy gap renormalization of crystalline benzene at different densities are computed

    I spy with my little eye: The detection of changes in emotional faces and the influence of facial feedback in Parkinson disease

    Full text link
    Background and purpose Parkinson disease (PD) is a progressive neurodegenerative disorder that affects the motor system but also involves deficits in emotional processing such as facial emotion recognition. In healthy participants, it has been shown that facial mimicry, the automatic imitation of perceived facial expressions, facilitates the interpretation of the emotional states of our counterpart. In PD patients, recent studies revealed reduced facial mimicry and consequently reduced facial feedback, suggesting that this reduction might contribute to the prominent emotion recognition deficits found in PD. Methods We investigated the influence of facial mimicry on facial emotion recognition. Twenty PD patients and 20 healthy controls (HCs) underwent a classical facial mimicry manipulation (holding a pen with the lips, teeth, or nondominant hand) while performing an emotional change detection task with faces. Results As expected, emotion recognition was significantly influenced by facial mimicry manipulation in HCs, further supporting the hypothesis of facial feedback and the related theory of embodied simulation. Importantly, patients with PD, generally and independent from the facial mimicry manipulation, were impaired in their ability to detected emotion changes. Our data further show that PD patients' facial emotional recognition abilities are completely unaffected by mimicry manipulation, suggesting that PD patients cannot profit from an artificial modulation of the already impaired facial feedback. Conclusions These findings suggest that it is not the hypomimia and the absence of facial feedback per se, but a disruption of the facial feedback loop, that leads to the prominent emotion recognition deficit in PD patients

    Minimally invasive management of vital teeth requiring root canal therapy

    Get PDF
    The present study aimed to investigate the possible use of a non-instrumentation technique including blue light irradiation for root canal cleaning. Extracted human single rooted teeth were selected. Nine different groups included distilled water, NaOCl, intra-canal heated NaOCl, and NaOCl + EDTA irrigation after either instrumentation or non-instrumentation, and a laser application group following non-instrumentation technique. The chemical assessment of the root canal dentine was evaluated using EDS and FT-IR. Surface microstructural analyses were performed by using SEM. The antimicrobial efficacy of different preparation techniques was evaluated using microbial tests. Laser application didn’t change the Ca/P, carbonate/phosphate and amide I/phosphate ratios of the root canal dentin the root canal dentin preserved its original form after light application. The instrumentation decreased the carbonate/phosphate and amide I/phosphate ratios of the root canal dentin regardless of the irrigation solution or technique (p < 0.05). According to the microbiological tests, the light application could not provide antibacterial efficacy as much as NaOCl irrigation. The NaOCl irrigation both in the non-instrumentation and instrumentation groups significantly reduced the number of bacteria (p < 0,05). Minimally invasive root canal preparation techniques where the root canal is not instrumented and is disinfected by laser irradiation followed by obturation with a hydraulic cement sealer may be an attractive treatment option for management of vital teeth needing root canal therapy and does not have any detrimental effects on the chemical structure of dentin

    B(1) inhomogeneity correction of RARE MRI with transceive surface radiofrequency probes

    Get PDF
    PURPOSE: The use of surface radiofrequency (RF) coils is common practice to boost sensitivity in (pre)clinical MRI. The number of transceive surface RF coils is rapidly growing due to the surge in cryogenically cooled RF technology and ultrahigh‐field MRI. Consequently, there is an increasing need for effective correction of the excitation field (B(1)(+)) inhomogeneity inherent in these coils. Retrospective B(1) correction permits quantitative MRI, but this usually requires a pulse sequence‐specific analytical signal intensity (SI) equation. Such an equation is not available for fast spin‐echo (Rapid Acquisition with Relaxation Enhancement, RARE) MRI. Here we present, test, and validate retrospective B(1) correction methods for RARE. METHODS: We implemented the commonly used sensitivity correction and developed an empirical model‐based method and a hybrid combination of both. Tests and validations were performed with a cryogenically cooled RF probe and a single‐loop RF coil. Accuracy of SI quantification and T(1) contrast were evaluated after correction. RESULTS: The three described correction methods achieved dramatic improvements in B(1) homogeneity and significantly improved SI quantification and T(1) contrast, with mean SI errors reduced from >40% to >10% following correction in all cases. Upon correction, images of phantoms and mouse heads demonstrated homogeneity comparable to that of images acquired with a volume resonator. This was quantified by SI profile, SI ratio (error 80% in vivo and ex vivo compared to PIU > 87% with the reference RF coil). CONCLUSIONS: This work demonstrates the efficacy of three B(1) correction methods tailored for transceive surface RF probes and RARE MRI. The corrected images are suitable for quantification and show comparable results between the three methods, opening the way for T(1) measurements and X‐nuclei quantification using surface transceiver RF coils. This approach is applicable to other MR techniques for which no analytical SI exists
    • 

    corecore