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Quantum Monte Carlo calculations of van der Waals interactions between aromatic benzene rings
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The magnitude of finite-size effects and Coulomb interactions in quantum Monte Carlo simulations of van der
Waals interactions between weakly bonded benzene molecules are investigated. To that extent, two trial wave
functions of the Slater-Jastrow and Backflow-Slater-Jastrow types are employed to calculate the energy-volume
equation of state. We assess the impact of the backflow coordinate transformation on the nonlocal correlation
energy. We found that the effect of finite-size errors in quantum Monte Carlo calculations on energy differences
is particularly large and may even be more important than the employed trial wave function. In addition to the
cohesive energy, the singlet excitonic energy gap and the energy gap renormalization of crystalline benzene at
different densities are computed.
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I. INTRODUCTION

In his original work of 1930 [1], London introduced the
fragment-based approach to van der Waals (vdW) interactions.
As a consequence, the dispersion energy between two spherical
objects A and B can be calculated using second-order pertur-
bation theory for the Coulomb interaction. In its general form,
the vdW energy EvdW can be written as

EvdW = −
∑

n=6,8,10,...

fn(RAB,rc,AB )
Cn

Rn
AB

, (1)

where fn(RAB,rc,AB ) is a damping function, which depends on
a cutoff distance rc,AB , whereas RAB is the distance between
two fragments. The damping function attenuates the vdW
energy for small values of RAB , where the electron clouds
around fragments overlap [2,3]. The dipolar term C6/Rn

AB

of the London expression has been widely used for comput-
ing the vdW interactions within approximate first-principles
electronic structure techniques, including Hartree-Fock (HF)
[4,5] and density functional theory (DFT)-based methods
[6–11]. Although, this description of vdW energy is particu-
larly accurate in the far-field for which the overlap between or-
bitals of the fragments is small, it is nevertheless very practical
to improve the accuracy of generalized gradient approximation
(GGA) exchange and correlation (XC) functionals. In fact,
it has been demonstrated that the inclusion of long-range
dispersion effects systematically improves the description of
nonlocal intermolecular interactions [9].

The so-called van der Waals density functional (vdW-DF)
approach has been extensively used to correct conventional
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local and semilocal GGA XC functionals [12–14]. Therein,
the XC energy is generally expressed as EXC = EGGA

X +
ELDA

C + Enon−local
C , where EGGA

X is the exchange term from
a given GGA XC functional. The local correlation energy
ELDA

C , however, is identical for most vdW functionals. By
definition, the nonlocal part of the correlation energy Enon−local

C

does not suffer from the Coulomb self-energy of each electron.
Hence, XC self-interaction errors in vdW-DF schemes are
mostly related to the corresponding exchange part. Similar
to semilocal GGA XC functionals, the results of vdW-DF
approaches depend on the employed EGGA

X [15–17]. There
are many noncovalent systems, where the accuracy of DFT
falls short of requirements, particularly if the problem is to
distinguish between molecular crystal phases and competing
low-energy polymorphs. As a simple molecular system, the
energy differences between crystalline benzene and its poly-
morphs under pressure are less than a few kilojoules per mole.
It has been demonstrated that the use of ab initio many-electron
wave-function methods is essential to tackle this problem [18].

Interestingly, the similarity between Schrödinger’s equation
in imaginary time and the diffusion equation suggests employ-
ing a stochastic diffusion-based process for solving the many-
body Schrödinger equation [19–21]. In fact, quantum Monte
Carlo (QMC) [22–24], which is a family of stochastic methods
for solving the Schrödinger equation, is becoming an effective
approach for investigating vdW interactions [15,25,26]. In
particular, previous studies have shown that diffusion Monte
Carlo (DMC) can provide accurate energies for atoms [27],
molecules [28], and crystals [29–34] with noncovalent inter-
actions [16,35,36].

In order to mimic an extended system, QMC simulations of
crystals are performed using finite simulation cells subject to
periodic boundary conditions. Yet practical and computational
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constraints restrict the maximum size of the simulation cell and
so introduce finite-size (FS) errors, which can be rather large.
The FS effects are larger in QMC than in mean-field methods
because electrons are explicitly represented. Quantifying and
minimizing these errors is an essential part of all QMC simu-
lations of extended systems, particularly when high accuracy
is required.

In this work, we employ variational Monte Carlo (VMC)
[37], as well as DMC [19], to study the Coulomb interaction
between benzene rings in solid form with Pbca symmetry.
Crystalline benzene, due to its aromatic vdW interactions,
is a model structure for studying noncovalent interactions in
solids. Specifically, we calculate the vdW energy between four
benzene molecules in a periodic simulation cell. We use the
fragment-based approach, where the only degree of freedom
is the distance between the center of mass of the benzene
molecules.

The energy gap of crystalline benzene has attracted a
considerable amount of interest because of its importance
in fundamental and applied science [38]. The energy gap
Eg is defined as the difference between the ionization en-
ergy and electron affinity. The Coulomb interactions between
molecules, which are packed in a crystalline phase, reduce the
fundamental gap compared to the gas phase. This renormalized
energy gap effect is crucial in organic electronics, especially in
charge transport. The gas-phase energy gap is typically several
electron volts, which is rather large for practical applications.
However, DFT-based methods are unable to quantify the
fundamental energy gap of solid benzene and to distinguish the
gas-phase gap from that of the crystallized structure [39,40].
Yet the energy band gap of a molecular crystal, as determined
by the GW approximation to many-body perturbation theory,
is in agreement with experimental measurements [41,42].

We employ the DMC approach to accurately calculate the
excitonic energy gap of crystalline benzene. Although the
DMC method was initially developed to study only ground-
state properties, it can also be applied to determine excited-
state spectra in atoms, molecules, and crystals [32,43,44]. The
excitonic energy gap is smaller than the quasiparticle band
gap, which is usually determined by the GW approximation.
The reason is the attraction between the excited electron in
the conduction band and the introduced hole in the valence
band. The exciton binding energy is defined as the difference
between the quasiparticle and the excitonic energy gaps. When
an electron is added to (removed from) a finite simulation
cell with periodic boundary conditions, a periodic lattice of
quasiparticles (quasiholes) is created. The energy of this lattice
of quasiparticles is similar to the Madelung constant of the
simulation cell lattice and introduces a large FS error in
the electron affinity and ionization potential. The FS error in the
quasiparticle energy gap is much larger than the excitonic gap
for which the number of electrons is fixed. When an electron is
added to (removed from) a finite and periodic simulation cell
in which the interaction between particles is controlled by the
Ewald potential, a neutralizing charge-density background is
applied which vanishes in the infinite-system-size limit. Hence,
the quasiparticle band gap can be physically meaningful in the
infinite-system-size limit.

The remainder of this paper is organized as follows. Sec-
tion II describes the details of our VMC and DMC calculations.

The corresponding results are discussed in Sec. III, which is
followed by our conclusions in Sec. IV.

II. COMPUTATIONAL DETAILS

The DMC method is a stochastic technique for calculating
the zero-temperature total electronic energy of a many-electron
system [19]. Even though DMC has been described in previous
review articles [22–24], we will nevertheless start with a
brief explanation of the general scheme since there are some
technical aspects in this work we feel are rather important.

More precisely, the DMC method solves the imaginary-time
Schrödinger equation

∂�(R,τ )

∂τ
= 1

2

Ne∑

i=1

∇2
ri
�(R,τ ) − [V (R) − ET ]�(R,τ ), (2)

where R = (r1,r2, . . . ,rNe
) is a 3Ne-dimensional vector rep-

resenting the positions of all Ne electrons in the simulation
cell, τ is the imaginary time, V (R) is the potential energy
including electron-electron interactions, and ET is a constant
energy offset. Throughout, Hartree atomic units are assumed;
that is, the numerical values of h̄, e, me, and 4πε0 are all
identical to 1. As already alluded to above, the imaginary-time
Schrödinger equation is similar to a 3Ne-dimensional diffusion
equation with diffusion constant D = 1/2. The potential-
energy term causes the diffusers to “branch” (multiply or
die out) at a position-dependent rate. The wave function
�(R,τ ) is the number density of diffusers, which are normally
known as walkers or configurations and are points in the 3Ne-
dimensional configuration space, not individual electrons. The
DMC method employs this physical interpretation to simulate
the imaginary-time evolution of the wave function using a finite
population of diffusing and branching walkers.

By solving the imaginary-time Schrödinger equation, the
electronic ground-state is projected out as τ → ∞. If the
initial wave function is expanded as a linear combination of
energy eigenfunctions �(τ = 0) = ∑

i ci�i , the solution of
the imaginary-time Schrödinger equation ∂�/∂τ = −(Ĥ −
ET )� is

�(τ ) =
∑

i

cie
−(Ei−ET )τ�i. (3)

Thus, as long as c0 �= 0, the wave function �(τ ) becomes
proportional to �0 as τ → ∞. By gradually adjusting ET to
maintain the normalization of the solution in the large-τ limit,
we can find the ground-state energy E0.

Nevertheless, a fundamental difficulty with this approach
is that the wave function �(R,τ ), which is not necessarily
positive, is interpreted as a walker density that must be
positive by its very definition. The naive application of the
DMC algorithm to a many-electron system yields a totally
symmetric many-boson ground-state of no physical interest.
The so-called fixed-node approximation requires a trial wave
function �T (R), which imposes a fixed nodal constraint and
hence prevents walker moves that cause �T to change sign.
As long as �T is properly antisymmetric, this is sufficient to
ensure that a fermionic solution is obtained. It can be shown that
the energies calculated within the fixed-node approximation
are variational [22]: the result is greater than or equal to the
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many-fermion ground-state energy and tends to the exact
energy as the (3Ne − 1)-dimensional nodal surface, on which
�T = 0, approaches the ground-state nodal surface. However,
assuming the fixed-node approximation is essential for DMC
simulations of large systems, it is the only fundamental
limitation of the method. Other approximations, such as the
use of a finite time step or the representation of ions by
pseudopotentials, can be made negligible or fully avoided
given sufficient computer time.

The diffusion and branching process described above is
unstable in practice since the potential energy V (R) diverges
whenever electrons approaches nuclei or each other, leading
to an uncontrollable branching. This problem, however, can
be overcome using an importance-sampling technique. To that
extent, the imaginary-time Schrödinger equation is rewritten
in terms of the quantity f (R,τ ) = �T (R)�(R,τ ) to obtain

∂f (R,τ )

∂t
= 1

2
∇2

Rf (R,τ ) − ∇R · [v(R)f (R,τ )]

− [EL(R) − ET ]f (R,τ ), (4)

where ∇R = (∇r1 ,∇r2 , . . . ,∇rNe
) is the 3Ne-dimensional gra-

dient operator, ∇2
R = ∇R · ∇R is the corresponding Laplacian,

v(R) = ∇R ln |�T (R)| is the 3Ne-dimensional drift-velocity
vector, and EL(R) = [1/�T (R)]Ĥ�T (R) is the local energy.
The importance-sampled imaginary-time Schrödinger equa-
tion corresponds to a diffusion process similar to that discussed
above, except that the walkers now drift with velocity v(R),
as well as diffusing and branching. The branching rate is
determined by the shifted local energy EL(R) − ET instead
of the shifted potential energy V (R) − ET . If the trial function
is a good approximation to the ground state, the local energy
is a smooth function of R, and the numerical difficulties
caused by divergences in V (R) are bypassed. The fixed-node
approximation is imposed by rejecting walker moves that
change the sign of �T (R).

In this work, the CASINO code [45] was used to perform
DMC simulations with a trial wave function of the Slater-
Jastrow (SJ) form,

�SJ(R) = exp[J (R)] det[ψn(r↑
i )] det[ψn(r↓

j )], (5)

where R is a 3N -dimensional vector containing the positions
of all N electrons, r↑

i is the position of the ith spin-up
electron, r↓

j is the position of the j th spin-down electron,

exp[J (R)] is the Jastrow correlation factor, and det[ψn(r↑
i )]

and det[ψn(r↓
j )] are Slater determinants made of spin-up

and spin-down one-electron wave functions. These orbitals
were obtained from Perdew-Burke-Ernzerhof (PBE) plus DFT
calculations performed with the CASTEP plane-wave code [46]
in conjunction with Trail-Needs Dirac-Fock pseudopotentials
[47,48]. For the purpose of approaching the complete-basis-set
limit [49], a large energy cutoff of 4000 eV was chosen. The
resulting plane-wave orbitals were subsequently transformed
into a localized blip polynomial basis [50]. Our DMC results
were obtained using a real �-point wave function.

The Jastrow correlation factor in Eq. (5) is a positive,
symmetric, explicit function of interparticle distances in the

form of

J (ri ,rI ) =
M∑

I=1

N∑

i=1

u1(riI ) +
N−1∑

i=1

N∑

j=i+1

u2(rij )

+
M∑

I=1

N−1∑

i=1

N∑

j=i+1

u3(riI ,rjI ,rij ), (6)

where N , M , ri , and rI are the number of electrons, number
of ions, the position of electron i, and the position of nucleus
I , whereas rij = ri − rj and riI = ri − rI . The polynomial
one-body electron-nucleus (1b), two-body electron-electron
(2b), and three-body electron-electron-nucleus (3b) terms are
denoted as u1(riI ), u2(rij ), and u3(riI ,rjI ,rij ), respectively.

We also studied the contribution of nondynamical correla-
tion by including the inhomogeneous backflow (BF) coordi-
nate transformation into the SJ wave function [51]. Our BF
transformation includes an electron-electron correlation factor
as well as electron-proton terms and is given by

Xi({rj }) = ri + ξ
(e−e)
i ({rj }) + ξ

(e−P )
i ({rj }), (7)

where Xi({rj }) is the transformed coordinate of electron i,
which depends on the full configuration of the system {rj }.
The vector functions ξ

(e−e)
i ({rj }) and ξ

(e−P )
i ({rj }) are the

electron-electron and electron-proton backflow displacements
of electron i. They are parameterized as

ξ
(e−e)
i ({rj }) =

Ne∑

j �=i

αij (rij )rij (8)

and

ξ
(e−P )
i ({rj }) =

NP∑

I

βiI (riI )riI , (9)

where αij (rij ) and βiI (riI ) are polynomial functions of
electron-electron and electron-proton distances, respectively,
and contain variational parameters. In this way, the resulting
backflow SJ (BSJ) is able to adapt the nodal surface in order
to recover the static correlation energy that is characteristic for
multireference systems [52]. All adjustable parameters in the
Jastrow correlation factor and BF coordinate transformation
are optimized by minimizing the variance, as well as the
variational energy at the VMC level [53,54]. The Kato cusp
conditions are enforced so that the local energy is finite when
two electrons or an electron and a nucleus are coincident
[55,56]. Specifically, the electron-electron cusp conditions
are imposed on the parameters of the Jastrow correlation
factor, and the electron-nucleus ones are imposed on the
orbitals within the Slater determinant. Since the backflow
coordinate transformation can modify the cusp conditions,
we have constrained the backflow parameters so that they are
not [51].

The excitonic energy band gap is determined by promoting
an electron from a valence-band state into a conduction-band
orbital at the � point. The singlet excited state was defined by
promoting an electron without flipping its spin:

�exc = E1 − E0, (10)
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FIG. 1. Top: The smallest and largest simulation cells with volumes Vs = 336.4334 Å
3

and Vl = 3691.9989 Å
3
, respectively, which are used

to calculate the vdW interactions between the benzene molecules. Bottom: Wigner-Seitz radius rS and cutoff length rC
ij as linear functions of R.

where E0 and E1 are the DMC energies of the ground and
excitonic states, respectively. The excitonic energy equals the
vertical optical absorption gap.

The FS errors are categorized into one- (independent parti-
cle) and many-body terms. The one-body term includes the
noninteracting kinetic, potential, and Hartree energies. The
one-body FS errors are much more important in metallic
systems due to shell-filling effects [57]. The single-particle
errors in metallic systems are eliminated using canonical and
grand-canonical twist-averaging boundary conditions [58,59].
Many-body FS errors are due to the exchange and corre-
lation effects within the Coulomb and kinetic energies and
cannot be removed by twist averaging. Crystalline benzene
is a wide-band-gap insulator, which is why many-body FS
effects are the main source of errors in our DMC calculations.
Hence, we investigate the influence of these FS errors on the
vdW interaction between aromatic benzene rings. There are
different approaches to reduce or cancel many-body errors.
The most widely used and perhaps oldest approximation is
extrapolating to the infinite-system-size limit, which, however,
is computationally rather expensive for the large simulation
cells that are studied here. We therefore analyze two alternative
methods to correct for many-body FS errors in our DMC
simulations. Specifically, we apply the structure-factor-based

approaches proposed by Chiesa et al. [60], which allows us to
estimate the effect of many-body FS errors in the potential and
kinetic energies based on the random-phase approximation.
The main assumption in this approach is that the low-k behavior
of the structure factor is independent of the shape of the
simulation cell. Here, we first apply the standard Ewald form
of the periodic Coulomb interaction and Chiesa et al.’s FS
corrections for both the kinetic (�KE) and potential (�PE)
energies. Second, we employ the model-periodic Coulomb
(MPC) interactions [61,62] to deal with the Coulomb errors.
Our DMC results obtained with both of these approaches are
expected to be similar.

III. RESULTS AND DISCUSSION

The orthorhombic simulation cell with Pbca symmetry
contains four benzene molecules and 120 electrons. More
precisely, we are considering ten different simulation cell

sizes, whose volumes are between Vs = 336.4334 Å
3

and Vl =
3691.9989 Å

3
, respectively. The volume of the simulation cells

was varied in such a way that the distance R between the
center of mass of the benzene molecules is a linear function
of rS (electronic Wigner-Seitz radius), as shown in Fig. 1.
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FIG. 2. Relative DMC energy as calculated using the Ewald and
MPC potentials and SJ and BSJ wave functions. The data points are
fitted to C6
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R10 , where Cn, with n = 6,8,10, . . . , are fitting
parameters and R is the smallest distance between the center of mass
of the benzene molecules. The reference line is the DMC energy at
the largest separation.

The relative configurations of the benzene molecules and their
geometries were fixed.

In total, there are 151 and 225 variational parameters in our
SJ and BSJ wave functions, respectively. We first optimized
the expansion coefficients of the Jastrow correlation factor
of the SJ wave function. The optimized coefficients were
subsequently used to also optimize cutoff length in the Jastrow
term. The optimized Jastrow term was reused to generate the
BSJ wave function. In our BSJ wave-function optimization, we
first optimized the variational parameters of the BF coordinate
transformation while the parameters in the Jastrow correlation
factor were kept fixed before we reoptimized all the variational
parameters together. We found that the described optimization
procedure produces an accurate wave function for DMC
calculations. The two-body u2(rij ) term consists of a power
expansion in rij and goes to zero at the cutoff length rC

ij . We
found that our optimized values for rC

ij represent essentially a
linear function of R.

The resulting nonlocal vdW energy curves between four
benzene molecules, which are calculated using the Ewald
and MPC interactions, are illustrated in Fig. 2. The DMC
data points are reported in the Supplementary Material [63].
An advantage of the MPC approach is that it reduces FS
errors arising from the use of the Ewald interaction. As an
alternative to the MPC scheme, many-body contributions to
the FS errors can also be minimized using the FS correction to
the exchange-correlation (�PE) and kinetic (�KE) energies
[60]. The total energy of the system at the largest separation is
considered as the zero reference. We would like to emphasize
that in our approach, the size-consistency problem within
binding-energy calculations [64] is avoided. The results of the
BSJ wave function with the Ewald and MPC interactions are
also shown in Fig. 2. As can be seen, employing the MPC
interaction corrects the Coulomb FS errors but not the many-
body FS error of the kinetic energy. Also, the binding-energy
curve, as calculated by the SJ-Ewald + �PE scheme, agrees
well with the corresponding SJ-MPC results. Even though the
magnitude of �KE is smaller than that of �PE, combining
both FS correction techniques entails the largest contribution.

TABLE I. The cohesive energy of crystalline benzene as obtained
by different DMC approaches at 0 K. All energies are in kJ/mol. The
quantum-mechanical zero-point energy contribution, which amounts
to 2.8 kJ/mol [65], is not included in our results. DMC results
are compared with the cohesive energies which are obtained using
coupled cluster single double (Triple, Quadrapole) (CCSD(T,Q)) and
complete basis set (CBS); hybrid functional of Becke (B) 3-parameter
Lee-Yang-Parr (LYP) combined with the Grimme empirical model
(B3LYP-D Grimme) and with the standard basis set of 6-31G(d,p)
and triple zeta with 1 polarization function (TZP); density functional
theory (DFT) with local density approximation (LDA); exact ex-
change (EXX); random phase approximation (RPA); and Perdew-
Burke-Ernzerhof (PBE) functional.

Approach Energy Reference

DMC SJ Ewald −125.4 ± 9.6 this work
DMC SJ MPC −57.9 ± 9.6 this work
DMC SJ Ewald+�PE −57.9 ± 9.6 this work
DMC SJ Ewald+�KE −86.8 ± 9.6 this work
DMC SJ Ewald+�PE+�KE −29.0 ± 9.6 this work
DMC SJ MPC+�KE −29.0 ± 9.6 this work
DMC BSJ Ewald −135.1 ± 9.6 this work
DMC BSJ MPC −67.5 ± 9.6 this work
DMC SJ MPC −52.1 ± 0.4 [36]
Estimated experiment at 0 K −55.3 ± 2.2 [18]
Quantum chemistry [coupled cluster −55.9 ± 0.76 ± 0.1 [18]

single double (Triple, Quadrapole)
(CCSD(T,Q))]

Hybrid functional of Becke (B) −48.2 ± 20.1 [66]
3-parameter Lee-Yang-Parr (LYP)
combined with the Grimme empirical
model (B3LYP-D Grimme) and with
the standard basis set of 6-31G(d,p)

B3LYP-D Grimme/triple zeta with 1 −46.5 ± 1.9 [66]
polarization function (TZP)

B3LYP/6-31G(d,p) −5.8 ± 8.9 [66]
CCSD(T)/complete basis set (CBS) -56.4 [67,68]
Typical experimental values −43 to −47 [69]
Density functional theory (DFT) with −57.00 [70]

local density approximation (LDA)
Exact exchange (EXX)/random phase −44.00 [70]

approximation (RPA) (LDA)
DFT Perdew-Burke-Ernzerhof (PBE) −9.60 [70]

functional
EXX/RPA (PBE) −47.00 [70]
DFT/LDA+B −34 [71]
DFT/LDA+B+LYP −65 [71]

Interestingly, the results using the SJ and BSJ wave functions
are remarkably similar to each other. The Ewlad+�KE+�PE
results are in excellent agreement with the DMC energies
which are calculated using MPC+�KE. Note that the higher-
order kinetic-energy corrections defined according to Eq. (55)
in Ref. [57] are included in�KE. The DMC energy curves were
all fitted to C6

R6 + C8
R8 + C10

R10 , where Cn, with n = 6,8,10, . . . , are
fitting parameters and R is the smallest distance between the
center of mass of the benzene molecules.

We computed the binding energy between the aromatic
rings, which indicates the strength of the vdW forces holding
the benzene molecules together. The cohesive energy Ecoh is
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defined as Ecoh = E
R0
DMC − E

R∞
DMC , where E

R0
DMC and E

R∞
DMC

are the DMC energies of the system at the equilibrium
distance R0 and infinite separation R∞, respectively. For the
latter, we assume that R∞ = 8.64 Å. Our cohesive energies,
as determined using different DMC schemes, are listed in
Table I. We find that using the bare Ewald interaction, the
cohesive energy is severely overestimated due to the presence
of significant FS errors. However, correcting for the latter by
including �PE and �KE, the cohesive energy is reduced by
as much as 96 kJ/mol. Moreover, comparing the contributions
of �PE and �KE immediately suggests that the former is
more effective and outperforms the �KE FS correction by
29 kJ/mol. In fact, the �PE FS correction is equally effective
as employing the MPC approach. Although including the BF
coordinate transformation generally improves the ground-state
total energy, the cohesive energies, as obtained by the SJ Ewald
and BSJ Ewald schemes, differ by just 9.5(1) kJ/mol, which
is also the case when adding the MPC interaction. That is,
when calculating energy differences using QMC, the impact
of FS errors is particularly important and may even be more
important than the particular trial wave function. Recently, the
DMC method was applied to calculate the equation of state of
molecular crystals [36]. In particular, the authors calculated the
lattice energy of crystalline benzene using Elatt = Ecrys − Egas,
which is listed in Table I. Our results obtained using the MPC
potential agree well with those recently reported ones.

The singlet DMC excitonic gaps, which were obtained at
different densities using the SJ and BSJ wave functions, are
shown in Fig. 3. The highest density (smallest R) corresponds
to crystalline benzene at 8 GPa pressure, while the lowest
density (largest R) mimics the gas phase. On the one hand, the
energy gaps computed by means of HF theory are typically too
large due to the absence of electron-electron correlation. On the
other hand, the band gaps calculated with conventional DFT
methods are generally too small. In DMC simulations, how-
ever, multiplying the Slater determinant made up of HF or DFT
orbitals by a Jastrow correlation factor permits us to retrieve a
large amount of the correlation energy and results in energy

gaps much closer to experiment. But applying the Jastrow
correlation factor does not alter the nodal surface of the trial
wave function, which is determined by the Slater determinant.
Nevertheless, introducing a BF coordinate transformation to
the SJ wave function affects the nodal surface and improves the
ability of DMC to recover nondynamical correlation energy.
As we found, adding a BF coordinate transformation lowers
the excitonic energy gap. When calculated with the GW
approximation, the corresponding highest occupied and lowest
unoccupied molecular orbital gaps of benzene in the gas
and crystal phases are 10.51 and 7.91 eV, respectively [42].
By contrast, at the DFT-LDA level of theory, the electron
addition and removal energies of benzene in the gas and crystal
phases are 5.16 and 5.07 eV, respectively. For comparison,
the experimental ionization potential of a benzene molecule
is 9.25 eV [72]. Using modified hybrid and constrained DFT
calculations [39,40], the fundamental gap renormalization was
previously found to be about ∼2 eV. The SJ-DMC calculations
predict that the energy gaps at optimized and largest R are
7.7(1) and 8.4(1) eV, respectively. The energy gaps which are
obtained using BSJ-DMC simulations are 7.4(1) and 8.1(1)
eV, respectively. We calculated the gap renormalization using
the difference between energy gaps at optimized R and the
largest R. Hence, DMC excitonic energy gap results yield a
gap renormalization of 0.7(1) eV.

However, DMC simulations of excitations spectra in solids
are rather challenging due to a 1/N effect: the change in
the total energy induced by a one- or two-particle excitation
is inversely proportional to the number of electrons in the
simulation cell. Thus, generally, a relatively large simulation
cell is essential for a high-precision description of the infinite
crystal. Yet our dispersion energy curves demonstrate the
importance of explicitly accounting for FS errors, in which
case the interactions between benzene molecules are rather
accurately described.

IV. CONCLUSIONS

In this work, the nonlocal vdW interactions between ben-
zene molecules was studied by means of DMC simulations
using the SJ and BSJ wave functions. We found that, when
calculating energy differences, the results are much more
affected by FS errors than generally appreciated. In the case
of the cohesive energy, FS errors can be as large as 96 kJ/mol,
which is much more pronounced than the impact of the BF
coordinate transformation to include nondynamical correlation
effects. In addition, we also calculated the singlet excitonic
energy gap for benzene in the gas and solid phases. At variance
with the cohesive energy, the inclusion of BF in the trial
wave function entails a reduction of the excitonic band gap.
Eventually, we also obtained a high-accuracy estimation of the
benzene gap renormalization.

ACKNOWLEDGMENTS

The authors would like to thank the Gauss Center for Super-
computing (GCS) for providing computing time through the
John von Neumann Institute for Computing (NIC) on the GCS
share of the supercomputer JUQUEEN at the Jülich Super-

205428-6



QUANTUM MONTE CARLO CALCULATIONS OF VAN DER … PHYSICAL REVIEW B 97, 205428 (2018)

computing Centre (JSC). Additional computing facilities were
provided through the DECI-13 PRACE project QMCBENZ15
and the Dutch national supercomputer Cartesius. This project

has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and
innovation program (Grant Agreement No. 716142).

[1] F. London, Z. Phys. Chem., Abt. B 11, 222 (1930).
[2] A. Koide, J. Phys. B 9, 3173 (1976).
[3] K. Tang and J. P. Toennies, J. Chem. Phys. 80, 3726 (1984).
[4] J. Hepburn and G. Scoles, Chem. Phys. Lett. 36, 451 (1975).
[5] R. Ahlrichs, R. Penco, and G. Scoles, Chem. Phys. 19, 119

(1977).
[6] X. Wu, M. C. Vargas, S. Nayak, V. Lotrich, and G. Scoles,

J. Chem. Phys. 115, 8748 (2001).
[7] U. Zimmerli, M. Parrinello, and P. Koumoutsakos, J. Chem.

Phys. 120, 2693 (2004).
[8] E. R. Johnson and A. D. Becke, J. Chem. Phys. 123, 024101

(2005).
[9] S. Grimme, J. Comput. Chem. 25, 1463 (2004); 27, 1787 (2006);

18, 9955 (2012).
[10] A. Tkatchenko and M. Scheffler, Phys. Rev. Lett. 102, 073005

(2009).
[11] L. M. Woods, D. A. R. Dalvit, A. Tkatchenko, P. Rodriguez-

Lopez, A. W. Rodriguez, and R. Podgornik, Rev. Mod. Phys.
88, 045003 (2016).

[12] M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I.
Lundqvist, Phys. Rev. Lett. 92, 246401 (2004)

[13] V. R. Cooper, Phys. Rev. B 81, 161104 (2010)
[14] K. Lee, E. D. Murray, L. Kong, B. I. Lundqvist, and D. C.

Langreth, Phys. Rev. B 82, 081101(R) (2010).
[15] S. Azadi and R. E. Cohen, J. Chem. Phys. 145, 064501 (2016).
[16] S. Azadi and G. J. Ackland, Phys. Chem. Chem. Phys. 19, 21829

(2017).
[17] R. Podeszwa, B. M. Rice, and K. Szalewicz, Phys. Rev. Lett.

101, 115503 (2008).
[18] J. Yang, W. Hu, D. Usvyat, D. Matthews, M. Schutz, and

G. K.-L. Chan, Science 345, 640 (2014).
[19] D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).
[20] D. M. Ceperley and B. J. Alder, J. Chem. Phys. 81, 5833 (1984).
[21] P. J. Reynolds, D. M. Ceperley, B. J. Alder, and W. A. Lester,

Jr., J. Chem. Phys. 77, 5593 (1982).
[22] W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal, Rev.

Mod. Phys. 73, 33 (2001).
[23] J. Kolorenc and L. Mitas, Rep. Prog. Phys. 74, 026502 (2011).
[24] A. Lüchow, Wiley Interdiscip. Rev. Comput. Mol. Sci. 1, 388

(2011).
[25] S. Azadi and R. E. Cohen, J. Chem. Phys. 143, 104301 (2015).
[26] M. Dubecký, L. Mitas, and P. Jurečka, Chem. Rev. 116, 5188

(2016).
[27] M. Marchi, S. Azadi, M. Casula, and S. Sorella, J. Chem. Phys.

131, 154116 (2009).
[28] S. Azadi, R. Singh, and T. D. Kühne, Int. J. Quantum Chem.

115, 1673 (2015).
[29] M. Marchi, S. Azadi, and S. Sorella, Phys. Rev. Lett. 107, 086807

(2011).
[30] S. Azadi and W. M. C. Foulkes, J. Chem. Phys. 143, 102807

(2015).
[31] S. Azadi, B. Monserrat, W. M. C. Foulkes, and R. J. Needs, Phys.

Rev. Lett. 112, 165501 (2014).

[32] S. Azadi, N. D. Drummond, and W. M. C. Foulkes, Phys. Rev.
B 95, 035142 (2017).

[33] S. Azadi and T. D. Kühne, J. Chem. Phys. 146, 084503 (2017).
[34] S. Azadi, W. M. C. Foulkes, and T. D. Kühne, New J. Phys. 15,

113005 (2013).
[35] J. Řezáč and P. Hobza, Chem. Rev. 116, 5038 (2016).
[36] A. Zen, J. G. Brandenburg, J. Klimeš, A. Tkatchenko, D. Alfè,

and A. Michaelides, Proc. Natl. Acad. Sci. USA 115, 1724
(2018).

[37] W. L. McMillan, Phys. Rev. 138, A442 (1965).
[38] J. D. Wright, Molecular Crystals, 2nd ed. (Cambridge University

Press, Cambridge, 1995).
[39] A. Droghetti, I. Rungger, C. Das Pemmaraju, and S. Sanvito,

Phys. Rev. B 93, 195208 (2016).
[40] S. Refaely-Abramson, S. Sharifzadeh, M. Jain, R. Baer, J. B.

Neaton, and L. Kronik, Phys. Rev. B 88, 081204(R) (2013).
[41] S. Sharifzadeh, A. Biller, L. Kronik, and J. B. Neaton, Phys. Rev.

B 85, 125307 (2012).
[42] J. B. Neaton, M. S. Hybertsen, and S. G. Louie, Phys. Rev. Lett.

97, 216405 (2006).
[43] L. Mitas and R. M. Martin, Phys. Rev. Lett. 72, 2438 (1994).
[44] M. D. Towler, R. Q. Hood, and R. J. Needs, Phys. Rev. B 62,

2330 (2000).
[45] R. J. Needs, M. D. Towler, N. D. Drummond, and P. López Ríos,

J. Phys.: Condens. Matter 22, 023201 (2010).
[46] S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert,

K. Refson, and M. C. Payne, Z. Kristallogr. 220, 567 (2005).
[47] J. R. Trail and R. J. Needs, J. Chem. Phys. 122, 174109 (2005).
[48] J. R. Trail and R. J. Needs, J. Chem. Phys. 122, 014112 (2005).
[49] S. Azadi, C. Cavazzoni, and S. Sorella, Phys. Rev. B 82, 125112

(2010).
[50] D. Alfè and M. J. Gillan, Phys. Rev. B 70, 161101 (2004).
[51] P. López Rìos, A. Ma, N. D. Drummond, M. D. Towler, and

R. J. Needs, Phys. Rev. E 74, 066701 (2006).
[52] F. Calcavecchia and T. D. Kühne, Europhys. Lett. 110, 20011

(2015).
[53] C. J. Umrigar, K. G. Wilson, and J. W. Wilkins, Phys. Rev. Lett.

60, 1719 (1988).
[54] N. D. Drummond and R. J. Needs, Phys. Rev. B 72, 085124

(2005).
[55] T. Kato, Commun. Pure Appl. Math. 10, 151 (1957).
[56] R. T. Pack and W. B. Brown, J. Chem. Phys. 45, 556 (1966).
[57] N. D. Drummond, R. J. Needs, A. Sorouri, and W. M. C. Foulkes,

Phys. Rev. B 78, 125106 (2008).
[58] C. Lin, F. H. Zong, and D. M. Ceperley, Phys. Rev. E 64, 016702

(2001).
[59] M. Holzmann, R. C. Clay, III, M. A. Morales, N. M. Tubman, D.

M. Ceperley, and C. Pierleoni, Phys. Rev. B 94, 035126 (2016)
[60] S. Chiesa, D. M. Ceperley, R. M. Martin, and M. Holzmann,

Phys. Rev. Lett. 97, 076404 (2006).
[61] L. M. Fraser, W. M. C. Foulkes, G. Rajagopal, R. J. Needs,

S. D. Kenny, and A. J. Williamson, Phys. Rev. B 53, 1814
(1996).

205428-7

https://doi.org/10.1088/0022-3700/9/18/009
https://doi.org/10.1088/0022-3700/9/18/009
https://doi.org/10.1088/0022-3700/9/18/009
https://doi.org/10.1088/0022-3700/9/18/009
https://doi.org/10.1063/1.447150
https://doi.org/10.1063/1.447150
https://doi.org/10.1063/1.447150
https://doi.org/10.1063/1.447150
https://doi.org/10.1016/0009-2614(75)80278-8
https://doi.org/10.1016/0009-2614(75)80278-8
https://doi.org/10.1016/0009-2614(75)80278-8
https://doi.org/10.1016/0009-2614(75)80278-8
https://doi.org/10.1016/0301-0104(77)85124-0
https://doi.org/10.1016/0301-0104(77)85124-0
https://doi.org/10.1016/0301-0104(77)85124-0
https://doi.org/10.1016/0301-0104(77)85124-0
https://doi.org/10.1063/1.1412004
https://doi.org/10.1063/1.1412004
https://doi.org/10.1063/1.1412004
https://doi.org/10.1063/1.1412004
https://doi.org/10.1063/1.1637034
https://doi.org/10.1063/1.1637034
https://doi.org/10.1063/1.1637034
https://doi.org/10.1063/1.1637034
https://doi.org/10.1063/1.1949201
https://doi.org/10.1063/1.1949201
https://doi.org/10.1063/1.1949201
https://doi.org/10.1063/1.1949201
https://doi.org/10.1002/jcc.20078
https://doi.org/10.1002/jcc.20078
https://doi.org/10.1002/jcc.20078
https://doi.org/10.1002/jcc.20078
https://doi.org/10.1002/jcc.20495
https://doi.org/10.1002/jcc.20495
https://doi.org/10.1002/jcc.20495
https://doi.org/10.1002/chem.201200497
https://doi.org/10.1002/chem.201200497
https://doi.org/10.1002/chem.201200497
https://doi.org/10.1103/PhysRevLett.102.073005
https://doi.org/10.1103/PhysRevLett.102.073005
https://doi.org/10.1103/PhysRevLett.102.073005
https://doi.org/10.1103/PhysRevLett.102.073005
https://doi.org/10.1103/RevModPhys.88.045003
https://doi.org/10.1103/RevModPhys.88.045003
https://doi.org/10.1103/RevModPhys.88.045003
https://doi.org/10.1103/RevModPhys.88.045003
https://doi.org/10.1103/PhysRevLett.92.246401
https://doi.org/10.1103/PhysRevLett.92.246401
https://doi.org/10.1103/PhysRevLett.92.246401
https://doi.org/10.1103/PhysRevLett.92.246401
https://doi.org/10.1103/PhysRevB.81.161104
https://doi.org/10.1103/PhysRevB.81.161104
https://doi.org/10.1103/PhysRevB.81.161104
https://doi.org/10.1103/PhysRevB.81.161104
https://doi.org/10.1103/PhysRevB.82.081101
https://doi.org/10.1103/PhysRevB.82.081101
https://doi.org/10.1103/PhysRevB.82.081101
https://doi.org/10.1103/PhysRevB.82.081101
https://doi.org/10.1063/1.4960434
https://doi.org/10.1063/1.4960434
https://doi.org/10.1063/1.4960434
https://doi.org/10.1063/1.4960434
https://doi.org/10.1039/C7CP03729E
https://doi.org/10.1039/C7CP03729E
https://doi.org/10.1039/C7CP03729E
https://doi.org/10.1039/C7CP03729E
https://doi.org/10.1103/PhysRevLett.101.115503
https://doi.org/10.1103/PhysRevLett.101.115503
https://doi.org/10.1103/PhysRevLett.101.115503
https://doi.org/10.1103/PhysRevLett.101.115503
https://doi.org/10.1126/science.1254419
https://doi.org/10.1126/science.1254419
https://doi.org/10.1126/science.1254419
https://doi.org/10.1126/science.1254419
https://doi.org/10.1103/PhysRevLett.45.566
https://doi.org/10.1103/PhysRevLett.45.566
https://doi.org/10.1103/PhysRevLett.45.566
https://doi.org/10.1103/PhysRevLett.45.566
https://doi.org/10.1063/1.447637
https://doi.org/10.1063/1.447637
https://doi.org/10.1063/1.447637
https://doi.org/10.1063/1.447637
https://doi.org/10.1063/1.443766
https://doi.org/10.1063/1.443766
https://doi.org/10.1063/1.443766
https://doi.org/10.1063/1.443766
https://doi.org/10.1103/RevModPhys.73.33
https://doi.org/10.1103/RevModPhys.73.33
https://doi.org/10.1103/RevModPhys.73.33
https://doi.org/10.1103/RevModPhys.73.33
https://doi.org/10.1088/0034-4885/74/2/026502
https://doi.org/10.1088/0034-4885/74/2/026502
https://doi.org/10.1088/0034-4885/74/2/026502
https://doi.org/10.1088/0034-4885/74/2/026502
https://doi.org/10.1002/wcms.40
https://doi.org/10.1002/wcms.40
https://doi.org/10.1002/wcms.40
https://doi.org/10.1002/wcms.40
https://doi.org/10.1063/1.4930137
https://doi.org/10.1063/1.4930137
https://doi.org/10.1063/1.4930137
https://doi.org/10.1063/1.4930137
https://doi.org/10.1021/acs.chemrev.5b00577
https://doi.org/10.1021/acs.chemrev.5b00577
https://doi.org/10.1021/acs.chemrev.5b00577
https://doi.org/10.1021/acs.chemrev.5b00577
https://doi.org/10.1063/1.3249966
https://doi.org/10.1063/1.3249966
https://doi.org/10.1063/1.3249966
https://doi.org/10.1063/1.3249966
https://doi.org/10.1002/qua.25005
https://doi.org/10.1002/qua.25005
https://doi.org/10.1002/qua.25005
https://doi.org/10.1002/qua.25005
https://doi.org/10.1103/PhysRevLett.107.086807
https://doi.org/10.1103/PhysRevLett.107.086807
https://doi.org/10.1103/PhysRevLett.107.086807
https://doi.org/10.1103/PhysRevLett.107.086807
https://doi.org/10.1063/1.4922619
https://doi.org/10.1063/1.4922619
https://doi.org/10.1063/1.4922619
https://doi.org/10.1063/1.4922619
https://doi.org/10.1103/PhysRevLett.112.165501
https://doi.org/10.1103/PhysRevLett.112.165501
https://doi.org/10.1103/PhysRevLett.112.165501
https://doi.org/10.1103/PhysRevLett.112.165501
https://doi.org/10.1103/PhysRevB.95.035142
https://doi.org/10.1103/PhysRevB.95.035142
https://doi.org/10.1103/PhysRevB.95.035142
https://doi.org/10.1103/PhysRevB.95.035142
https://doi.org/10.1063/1.4976836
https://doi.org/10.1063/1.4976836
https://doi.org/10.1063/1.4976836
https://doi.org/10.1063/1.4976836
https://doi.org/10.1088/1367-2630/15/11/113005
https://doi.org/10.1088/1367-2630/15/11/113005
https://doi.org/10.1088/1367-2630/15/11/113005
https://doi.org/10.1088/1367-2630/15/11/113005
https://doi.org/10.1021/acs.chemrev.5b00526
https://doi.org/10.1021/acs.chemrev.5b00526
https://doi.org/10.1021/acs.chemrev.5b00526
https://doi.org/10.1021/acs.chemrev.5b00526
https://doi.org/10.1073/pnas.1715434115
https://doi.org/10.1073/pnas.1715434115
https://doi.org/10.1073/pnas.1715434115
https://doi.org/10.1073/pnas.1715434115
https://doi.org/10.1103/PhysRev.138.A442
https://doi.org/10.1103/PhysRev.138.A442
https://doi.org/10.1103/PhysRev.138.A442
https://doi.org/10.1103/PhysRev.138.A442
https://doi.org/10.1103/PhysRevB.93.195208
https://doi.org/10.1103/PhysRevB.93.195208
https://doi.org/10.1103/PhysRevB.93.195208
https://doi.org/10.1103/PhysRevB.93.195208
https://doi.org/10.1103/PhysRevB.88.081204
https://doi.org/10.1103/PhysRevB.88.081204
https://doi.org/10.1103/PhysRevB.88.081204
https://doi.org/10.1103/PhysRevB.88.081204
https://doi.org/10.1103/PhysRevB.85.125307
https://doi.org/10.1103/PhysRevB.85.125307
https://doi.org/10.1103/PhysRevB.85.125307
https://doi.org/10.1103/PhysRevB.85.125307
https://doi.org/10.1103/PhysRevLett.97.216405
https://doi.org/10.1103/PhysRevLett.97.216405
https://doi.org/10.1103/PhysRevLett.97.216405
https://doi.org/10.1103/PhysRevLett.97.216405
https://doi.org/10.1103/PhysRevLett.72.2438
https://doi.org/10.1103/PhysRevLett.72.2438
https://doi.org/10.1103/PhysRevLett.72.2438
https://doi.org/10.1103/PhysRevLett.72.2438
https://doi.org/10.1103/PhysRevB.62.2330
https://doi.org/10.1103/PhysRevB.62.2330
https://doi.org/10.1103/PhysRevB.62.2330
https://doi.org/10.1103/PhysRevB.62.2330
https://doi.org/10.1088/0953-8984/22/2/023201
https://doi.org/10.1088/0953-8984/22/2/023201
https://doi.org/10.1088/0953-8984/22/2/023201
https://doi.org/10.1088/0953-8984/22/2/023201
https://doi.org/10.1063/1.1888569
https://doi.org/10.1063/1.1888569
https://doi.org/10.1063/1.1888569
https://doi.org/10.1063/1.1888569
https://doi.org/10.1063/1.1829049
https://doi.org/10.1063/1.1829049
https://doi.org/10.1063/1.1829049
https://doi.org/10.1063/1.1829049
https://doi.org/10.1103/PhysRevB.82.125112
https://doi.org/10.1103/PhysRevB.82.125112
https://doi.org/10.1103/PhysRevB.82.125112
https://doi.org/10.1103/PhysRevB.82.125112
https://doi.org/10.1103/PhysRevB.70.161101
https://doi.org/10.1103/PhysRevB.70.161101
https://doi.org/10.1103/PhysRevB.70.161101
https://doi.org/10.1103/PhysRevB.70.161101
https://doi.org/10.1103/PhysRevE.74.066701
https://doi.org/10.1103/PhysRevE.74.066701
https://doi.org/10.1103/PhysRevE.74.066701
https://doi.org/10.1103/PhysRevE.74.066701
https://doi.org/10.1209/0295-5075/110/20011
https://doi.org/10.1209/0295-5075/110/20011
https://doi.org/10.1209/0295-5075/110/20011
https://doi.org/10.1209/0295-5075/110/20011
https://doi.org/10.1103/PhysRevLett.60.1719
https://doi.org/10.1103/PhysRevLett.60.1719
https://doi.org/10.1103/PhysRevLett.60.1719
https://doi.org/10.1103/PhysRevLett.60.1719
https://doi.org/10.1103/PhysRevB.72.085124
https://doi.org/10.1103/PhysRevB.72.085124
https://doi.org/10.1103/PhysRevB.72.085124
https://doi.org/10.1103/PhysRevB.72.085124
https://doi.org/10.1002/cpa.3160100201
https://doi.org/10.1002/cpa.3160100201
https://doi.org/10.1002/cpa.3160100201
https://doi.org/10.1002/cpa.3160100201
https://doi.org/10.1063/1.1727605
https://doi.org/10.1063/1.1727605
https://doi.org/10.1063/1.1727605
https://doi.org/10.1063/1.1727605
https://doi.org/10.1103/PhysRevB.78.125106
https://doi.org/10.1103/PhysRevB.78.125106
https://doi.org/10.1103/PhysRevB.78.125106
https://doi.org/10.1103/PhysRevB.78.125106
https://doi.org/10.1103/PhysRevE.64.016702
https://doi.org/10.1103/PhysRevE.64.016702
https://doi.org/10.1103/PhysRevE.64.016702
https://doi.org/10.1103/PhysRevE.64.016702
https://doi.org/10.1103/PhysRevB.94.035126
https://doi.org/10.1103/PhysRevB.94.035126
https://doi.org/10.1103/PhysRevB.94.035126
https://doi.org/10.1103/PhysRevB.94.035126
https://doi.org/10.1103/PhysRevLett.97.076404
https://doi.org/10.1103/PhysRevLett.97.076404
https://doi.org/10.1103/PhysRevLett.97.076404
https://doi.org/10.1103/PhysRevLett.97.076404
https://doi.org/10.1103/PhysRevB.53.1814
https://doi.org/10.1103/PhysRevB.53.1814
https://doi.org/10.1103/PhysRevB.53.1814
https://doi.org/10.1103/PhysRevB.53.1814


SAM AZADI AND T. D. KÜHNE PHYSICAL REVIEW B 97, 205428 (2018)

[62] A. J. Williamson, G. Rajagopal, R. J. Needs, L. M. Fraser, W. M.
C. Foulkes, Y. Wang, and M. Y. Chou, Phys. Rev. B 55, R4851
(1997).

[63] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.97.205428 for the value of DMC energies
which are obtained at different rS .

[64] A. Zen, S. Sorella, M. J. Gillan, A. Michaelides, and D. Alfé,
Phys. Rev. B 93, 241118(R) (2016).

[65] M. Nakamura and T. Miyazawa, J. Chem. Phys. 51, 3146 (1969).
[66] B. Civalleri, C. M. Zicovich-Wilson, L. Valenzano, and P.

Ugliengo, Cryst. Eng. Commun. 10, 405 (2008).

[67] A. L. Ringer and C. D. Sherrill, Chem. Eur. J. 14, 2542 (2008).
[68] M. R. Kennedy, A. R. McDonald, A. Eugene DePrince, III,

M. S. Marshall, R. Podeszwa, and C. David Sherrill, J. Chem.
Phys. 140, 121104 (2014).

[69] J. S. Chickos and W. E. Acree, Jr., J. Phys. Chem. Ref. Data 31,
537 (2002).

[70] D. Lu, Y. Li, D. Rocca, and G. Galli, Phys. Rev. Lett. 102, 206411
(2009).

[71] E. Jan Meijer and M. Spirk, J. Chem. Phys. 105, 8684 (1996)
[72] L. A. Curtiss, P. C. Redfern, K. Raghavachari, and J. A. Pople,

J. Chem. Phys. 109, 42 (1998).

205428-8

https://doi.org/10.1103/PhysRevB.55.R4851
https://doi.org/10.1103/PhysRevB.55.R4851
https://doi.org/10.1103/PhysRevB.55.R4851
https://doi.org/10.1103/PhysRevB.55.R4851
http://link.aps.org/supplemental/10.1103/PhysRevB.97.205428
https://doi.org/10.1103/PhysRevB.93.241118
https://doi.org/10.1103/PhysRevB.93.241118
https://doi.org/10.1103/PhysRevB.93.241118
https://doi.org/10.1103/PhysRevB.93.241118
https://doi.org/10.1063/1.1672479
https://doi.org/10.1063/1.1672479
https://doi.org/10.1063/1.1672479
https://doi.org/10.1063/1.1672479
https://doi.org/10.1039/B715018K
https://doi.org/10.1039/B715018K
https://doi.org/10.1039/B715018K
https://doi.org/10.1039/B715018K
https://doi.org/10.1002/chem.200701622
https://doi.org/10.1002/chem.200701622
https://doi.org/10.1002/chem.200701622
https://doi.org/10.1002/chem.200701622
https://doi.org/10.1063/1.4869686
https://doi.org/10.1063/1.4869686
https://doi.org/10.1063/1.4869686
https://doi.org/10.1063/1.4869686
https://doi.org/10.1063/1.1475333
https://doi.org/10.1063/1.1475333
https://doi.org/10.1063/1.1475333
https://doi.org/10.1063/1.1475333
https://doi.org/10.1103/PhysRevLett.102.206411
https://doi.org/10.1103/PhysRevLett.102.206411
https://doi.org/10.1103/PhysRevLett.102.206411
https://doi.org/10.1103/PhysRevLett.102.206411
https://doi.org/10.1063/1.472649
https://doi.org/10.1063/1.472649
https://doi.org/10.1063/1.472649
https://doi.org/10.1063/1.472649
https://doi.org/10.1063/1.476538
https://doi.org/10.1063/1.476538
https://doi.org/10.1063/1.476538
https://doi.org/10.1063/1.476538



