190 research outputs found

    Pairing in cuprates from high energy electronic states

    Full text link
    The in-plane optical conductivity of Bi2Sr2CaCu2O8+d thin films with small carrier density (underdoped) up to large carrier density (overdoped) is analyzed with unprecedented accuracy. Integrating the conductivity up to increasingly higher energies points to the energy scale involved when the superfluid condensate builds up. In the underdoped sample, states extending up to 2 eV contribute to the superfluid. This anomalously large energy scale may be assigned to a change of in-plane kinetic energy at the superconducting transition, and is compatible with an electronic pairing mechanism.Comment: 11 pages, 3 figure

    The in-plane electrodynamics of the superconductivity in Bi2Sr2CaCu2O8+d: energy scales and spectral weight distribution

    Full text link
    The in-plane infrared and visible (3 meV-3 eV) reflectivity of Bi2Sr2CaCu2O8+d (Bi-2212) thin films is measured between 300 K and 10 K for different doping levels with unprecedented accuracy. The optical conductivity is derived through an accurate fitting procedure. We study the transfer of spectral weight from finite energy into the superfluid as the system becomes superconducting. In the over-doped regime, the superfluid develops at the expense of states lying below 60 meV, a conventional energy of the order of a few times the superconducting gap. In the underdoped regime, spectral weight is removed from up to 2 eV, far beyond any conventional scale. The intraband spectral weight change between the normal and superconducting state, if analyzed in terms of a change of kinetic energy is ~1 meV. Compared to the condensation energy, this figure addresses the issue of a kinetic energy driven mechanism.Comment: 13 pages with 9 figures include

    The change of Fermi surface topology in Bi2Sr2CaCu2O8 with doping

    Get PDF
    We report the observation of a change in Fermi surface topology of Bi2Sr2CaCu2O8 with doping. By collecting high statistics ARPES data from moderately and highly overdoped samples and dividing the data by the Fermi function, we answer a long standing question about the Fermi surface shape of Bi2Sr2CaCu2O8 close to the (pi,0) point. For moderately overdoped samples (Tc=80K) we find that both the bonding and antibonding sheets of the Fermi surface are hole-like. However for a doping level corresponding to Tc=55K we find that the antibonding sheet becomes electron-like. This change does not directly affect the critical temperature and therefore the superconductivity. However, since similar observations of the change of the topology of the Fermi surface were observed in LSCO and Bi2Sr2Cu2O6, it appears to be a generic feature of hole-doped superconductors. Because of bilayer splitting, though, this doping value is considerably lower than that for the single layer materials, which again argues that it is unrelated to Tc

    Simple synthesis of karahanaenone

    Get PDF
    1169-117

    Absence of a pseudogap in the in-plane infrared response of Bi2Sr2CaCu2O(8+d)

    Full text link
    The ab-plane reflectance of Bi2Sr2CaCu2O(8+d) thin films was measured in the 30-25000 cm^(-1) range for one underdoped (Tc = 70 K), and one overdoped sample (Tc = 63 K) as a function of temperature (10-300 K). We find qualitatively similar behaviors in the temperature dependence of the normal-state infrared response of both samples. Above Tc, the effective spectral weight, obtained from the integrated conductivity, does not decrease when T decreases, so that no opening of an optical pseudogap is seen. We suggest that these are consequences of the pseudogap opening first in the k=(0, pi) direction, according to ARPES, and of the in-plane infrared conductivity being mostly sensitive to the k=(pi, pi) direction.Comment: 11 pages, 3 figure

    Enhancement of spin orbit coupling at manganite surfaces

    Get PDF
    Spin orbit coupling in magnetic systems lacking inversion symmetry can give rise to nontrivial spin textures. Magnetic thin films and heterostructures are potential candidates for the formation of skyrmions and other noncollinear spin configurations as inversion symmetry is inherently lost at their surfaces and interfaces. However, manganites, in spite of their extraordinarily rich magnetic phase diagram, have not yet been considered of interest within this context as their spin orbit coupling is assumed to be negligible. We demonstrate here, by means of angular dependent x ray linear dichroism experiments and theoretical calculations, the existence of a noncollinear antiferromagnetic ordering at the surface of ferromagnetic La2 3Sr1 3MnO3 thin films whose properties can only be explained by an unexpectedly large enhancement of the spin orbit interaction. Our results reveal that spin orbit coupling, usually assumed to be very small in manganites, can be significantly enhanced at surfaces and interfaces adding a new twist to the possible magnetic orders that can arise in electronically reconstructed system

    Anomalous electronic susceptibility in Bi2Sr2CuO6+d and comparison with other overdoped cuprates

    Full text link
    We report magnetic susceptibility performed on overdoped Bi2Sr2CuO6+d powders as a function of oxygen doping d and temperature T. The decrease of the spin susceptibility with increasing T is confirmed. At sufficient high temperature, the spin susceptibility Chi_s presents an unusual linear temperature dependence Chi_s ~ Chi_s0 -Chi_1 T. Moreover, a linear correlation between Chi_1 and Chi_s0 for increasing hole concentration is displayed. A temperature Tchi, independent of hole doping characterizes this scaling. Comparison with other cuprates of the literature(LSCO, Tl-2201 and Bi-2212), over the same overdoped range, shows similarities with above results. These non conventional metal features will be discussed in terms of a singular narrow-band structure.Comment: 16 pages, 4 figure

    Interfacial effects in La 2/3 Sr 1/3 MnO 3 thin films with different complex oxide capping layers

    Get PDF
    Interfacial effects in sputtered La 2/3 Sr 1/3 MnO 3 thin films with different capping layers (MgO, LaAlO 3 , SrTiO 3 , NdGaO 3 , and Au) have been locally investigated by means of x-ray absorption spectroscopy and x-ray magnetic circular dichroism at the Mn L 3,2 -edge. Data were acquired by using the total electron yield detection mode thus guaranteeing maximum sensitivity to the interface. The data show that LaAlO 3 capping almost does not modify the bulklike Mn valence at the interface. In case of SrTiO 3 and Au, the presence of divalent Mn is detected, whereas MgO and NdGaO 3 capping lead to an increase of the Mn valence oxidation state. The modification of the nominal Mn valence state leads to depressed surface magnetization
    corecore