573 research outputs found

    Localization problem of the quasiperiodic system with the spin orbit interaction

    Full text link
    We study one dimensional quasiperiodic system obtained from the tight-binding model on the square lattice in a uniform magnetic field with the spin orbit interaction. The phase diagram with respect to the Harper coupling and the Rashba coupling are proposed from a number of numerical studies including a multifractal analysis. There are four phases, I, II, III, and IV in this order from weak to strong Harper coupling. In the weak coupling phase I all the wave functions are extended, in the intermediate coupling phases II and III mobility edges exist, and accordingly both localized and extended wave functions exist, and in the strong Harper coupling phase IV all the wave functions are localized. Phase I and Phase IV are related by the duality, and phases II and III are related by the duality, as well. A localized wave function is related to an extended wave function by the duality, and vice versa. The boundary between phases II and III is the self-dual line on which all the wave functions are critical. In the present model the duality does not lead to pure spectra in contrast to the case of Harper equation.Comment: 10 pages, 11 figure

    Critical Level Statistics of the Fibonacci Model

    Full text link
    We numerically analyze spectral properties of the Fibonacci model which is a one-dimensional quasiperiodic system. We find that the energy levels of this model have the distribution of the band widths ww obeys PB(w)wαP_B(w)\sim w^{\alpha} (w0)(w\to 0) and PB(w)eβwP_B(w) \sim e^{-\beta w} (w)(w\to\infty), the gap distribution PG(s)sδP_G(s)\sim s^{-\delta} (s0)(s\to 0) (α,β,δ>0\alpha,\beta,\delta >0) . We also compare the results with those of multi-scale Cantor sets. We find qualitative differences between the spectra of the Fibonacci model and the multi-scale Cantor sets.Comment: 7 page

    Superconductivity and Abelian Chiral Anomalies

    Get PDF
    Motivated by the geometric character of spin Hall conductance, the topological invariants of generic superconductivity are discussed based on the Bogoliuvov-de Gennes equation on lattices. They are given by the Chern numbers of degenerate condensate bands for unitary order, which are realizations of Abelian chiral anomalies for non-Abelian connections. The three types of Chern numbers for the x,yx,y and zz-directions are given by covering degrees of some doubled surfaces around the Dirac monopoles. For nonunitary states, several topological invariants are defined by analyzing the so-called qq-helicity. Topological origins of the nodal structures of superconducting gaps are also discussed.Comment: An example with a figure and discussions are supplemente

    Density Matrix Renormalization Group Study of the S=1/2 Anisotropic Antiferromagnetic Heisenberg Chains with Quasiperiodic Exchange Modulation

    Full text link
    The low energy behavior of the S=1/2 antiferromagnetic XY-like XXZ chains with precious mean quasiperiodic exchange modulation is studied by the density matrix renormalization group method. It is found that the energy gap of the chain with length N scales as exp(cNω)\exp (-cN^{\omega}) with nonuniversal exponent ω\omega if the Ising component of the exhange coupling is antiferromagnetic. This behavior is expected to be the characteristic feature of the quantum spin chains with relevant aperiodicity. This is in contrast to the XY chain for which the precious mean exchange modulation is marginal and the gap scales as NzN^{-z}. On the contrary, it is also verified that the energy gap scales as N1N^{-1} if the Ising component of the exhange coupling is ferromagnetic. Our results are not only consistent with the recent bosonization analysis of Vidal, Mouhanna and Giamarchi but also clarify the nature of the strong coupling regime which is inaccesssible by the bosonization approach.Comment: 8 pages, 15 figures, 1 table; Proceedings of the workshop 'Frontiers in Magnetism', Kyoto, Oct. 199

    Braid Group, Gauge Invariance and Topological Order

    Full text link
    Topological order in two-dimensional systems is studied by combining the braid group formalism with a gauge invariance analysis. We show that flux insertions (or large gauge transformations) pertinent to the toroidal topology induce automorphisms of the braid group, giving rise to a unified algebraic structure that characterizes the ground-state subspace and fractionally charged, anyonic quasiparticles. Minimal ground state degeneracy is derived without assuming any relation between quasiparticle charge and statistics. We also point out that noncommutativity between large gauge transformations is essential for the topological order in the fractional quantum Hall effect.Comment: 5pages, 2 figures; reference adde

    Zero modes, energy gap, and edge states of anisotropic honeycomb lattice in a magnetic field

    Full text link
    We present systematic study of zero modes and gaps by introducing effects of anisotropy of hopping integrals for a tight-binding model on the honeycomb lattice in a magnetic field. The condition for the existence of zero modes is analytically derived. From the condition, it is found that a tiny anisotropy for graphene is sufficient to open a gap around zero energy in a magnetic field. This gap behaves as a non-perturbative and exponential form as a function of the magnetic field. The non-analytic behavior with respect to the magnetic field can be understood as tunneling effects between energy levels around two Dirac zero modes appearing in the honeycomb lattice, and an explicit form of the gap around zero energy is obtained by the WKB method near the merging point of these Dirac zero modes. Effects of the anisotropy for the honeycomb lattices with boundaries are also studied. The condition for the existence of zero energy edge states in a magnetic field is analytically derived. On the basis of the condition, it is recognized that anisotropy of the hopping integrals induces abrupt changes of the number of zero energy edge states, which depend on the shapes of the edges sensitively.Comment: 36 pages, 20 figures; added discussion on experiments in Sec.VI, cited Refs.[35]-[40], and reworded Sec.IV

    Quasiperiodic Modulated-Spring Model

    Full text link
    We study the classical vibration problem of a chain with spring constants which are modulated in a quasiperiodic manner, {\it i. e.}, a model in which the elastic energy is jkj(uj1uj)2\sum_j k_j( u_{j-1}-{u_j})^2, where kj=1+Δcos[2πσ(j1/2)+θ]k_j=1+\Delta cos[2\pi\sigma(j-1/2)+\theta] and σ\sigma is an irrational number. For Δ<1\Delta < 1, it is shown analytically that the spectrum is absolutely continuous, {\it i.e.}, all the eigen modes are extended. For Δ=1\Delta=1, numerical scaling analysis shows that the spectrum is purely singular continuous, {\it i.e.}, all the modes are critical.Comment: REV TeX fil

    Hidden dimers and the matrix maps: Fibonacci chains re-visited

    Full text link
    The existence of cycles of the matrix maps in Fibonacci class of lattices is well established. We show that such cycles are intimately connected with the presence of interesting positional correlations among the constituent `atoms' in a one dimensional quasiperiodic lattice. We particularly address the transfer model of the classic golden mean Fibonacci chain where a six cycle of the full matrix map exists at the centre of the spectrum [Kohmoto et al, Phys. Rev. B 35, 1020 (1987)], and for which no simple physical picture has so far been provided, to the best of our knowledge. In addition, we show that our prescription leads to a determination of other energy values for a mixed model of the Fibonacci chain, for which the full matrix map may have similar cyclic behaviour. Apart from the standard transfer-model of a golden mean Fibonacci chain, we address a variant of it and the silver mean lattice, where the existence of four cycles of the matrix map is already known to exist. The underlying positional correlations for all such cases are discussed in details.Comment: 14 pages, 2 figures. Submitted to Physical Review

    Real Space Renormalization Group Study of the S=1/2 XXZ Chains with Fibonacci Exchange Modulation

    Get PDF
    Ground state properties of the S=1/2 antiferromagnetic XXZ chain with Fibonacci exchange modulation are studied using the real space renormalization group method for strong modulation. The quantum dynamical critical behavior with a new universality class is predicted in the isotropic case. Combining our results with the weak coupling renormalization group results by Vidal et al., the ground state phase diagram is obtained.Comment: 9 pages, 9 figure

    Electronic energy spectra and wave functions on the square Fibonacci tiling

    Full text link
    We study the electronic energy spectra and wave functions on the square Fibonacci tiling, using an off-diagonal tight-binding model, in order to determine the exact nature of the transitions between different spectral behaviors, as well as the scaling of the total bandwidth as it becomes finite. The macroscopic degeneracy of certain energy values in the spectrum is invoked as a possible mechanism for the emergence of extended electronic Bloch wave functions as the dimension changes from one to two
    corecore