research

Localization problem of the quasiperiodic system with the spin orbit interaction

Abstract

We study one dimensional quasiperiodic system obtained from the tight-binding model on the square lattice in a uniform magnetic field with the spin orbit interaction. The phase diagram with respect to the Harper coupling and the Rashba coupling are proposed from a number of numerical studies including a multifractal analysis. There are four phases, I, II, III, and IV in this order from weak to strong Harper coupling. In the weak coupling phase I all the wave functions are extended, in the intermediate coupling phases II and III mobility edges exist, and accordingly both localized and extended wave functions exist, and in the strong Harper coupling phase IV all the wave functions are localized. Phase I and Phase IV are related by the duality, and phases II and III are related by the duality, as well. A localized wave function is related to an extended wave function by the duality, and vice versa. The boundary between phases II and III is the self-dual line on which all the wave functions are critical. In the present model the duality does not lead to pure spectra in contrast to the case of Harper equation.Comment: 10 pages, 11 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020