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Motivated by the geometric character of spin Hall conductance, the topological invariants of generic super-
conductivity are discussed based on the Bogoliuvov-de Gennes equation on lattices. They are given by the
Chern numbers of degenerate condensate bands for unitary order, which are realizations of Abelian chiral
anomalies for non-Abelian connections. The three types of Chern numbers fey yhandz directions are
given by covering degrees of some doubled surfaces around the Dirac monopoles. For nonunitary states,
several topological invariants are defined by analyzing the so-ogltedicity. Topological origins of the nodal
structures of superconducting gaps are also discussed.
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I. INTRODUCTION In this paper, we establish a topological characterization
of generalsuperconductors based on the BdG equation on
The importance of quantum-mechanical phases in confattices. The energy spectrum of the BdG Hamiltonian are
densed matter physics has been recognized and emphasifatly used to calculate the Chern numbers of the supercon-
for recent several decades. The fundamental character ofductors. As for the unitary superconductors, condensed mat-
vector potential is evident in the Aharonov-Bohm effectter realizations of chiral anomalies for non-Abelian connec-
where theU(1) gauge structure is essential and a magnetidions are given explicitly. Topological consideration is useful
field in itself plays only a secondary rotdopological struc-  to distinguish superconductivities with the same pairing sym-
tures in quantum gauge field theories have also been studigdetry. The present analysis also clarifies nodal structures of
and extensive knowledge has been accumufa®@dantum  superconducting gaps with various anisotropic order param-
mechanics itself supplies a fundamental gauge struétitre. eters, which is closely related to the quantum Hall effect in
is known as geometrical phases in many different contextshree dimension&2! Various types of the nodal structures
where gauge structures emerge by restricting physicaire not accidental but have fundamental topological origins.
spaces. The quantum Hall effect is one of the key phenomenf possible time-reversal symmettry-breaking and an uncon-
to establish the importance of geometrical phds€he to- ventional gap structure are proposed based on the
pological character of the Hall conductance was first realize@xperiments?
by the Chern number expression, where the Bloch functions
define “vector potentials” in the magnetic Brillouin zone ac- Il. BOGOLIUVOV-DE GENNES HAMILTONIAN
companied with a gauge structir&urther the ground state . o )
of the fractional quantum Hall effect is a complex many- Let us start from the following Hamiltonian on lattices
body state where another kind of gauge structure emérgegVith spin-rotation symmetry:
These quantum states with nontrivial geometrical phases are .
charactc(]erized by topological orders w%ich extend zn idea of 1= 2 tClyCjo + 2 V27874, Ol Cio G, '“E CloCio
order parameters in statistical mechanics to the quantum ' v '
states without any spontaneous symmetry breakivg.also  wherec;,, is the electron annihilation operator with spinat
point out an importance of boundary effects for topologicallysite i, t=t;*, — V{ji727%=(Vja72oy*, \/ozosrs
nontrivial systems. Bulk properties are closely related to=\/727174%3 and u is a chemical potential. Summations over
edge states and localized states near impurities angpeated spin indices are implied hereafter.
vortices®~12 The mean field Bardeen—Cooper—Schrieffer approxima-
Topologically nontrivial structures in superconductorstion leads to
also have a long history. Recently, following a prediction X
of flux phases for correlated electron systéfhspin Hall H=2, tijciTch(,+ > (Ajes CjoCig, . C. )=, cit,ci(,,
conductance is defined for superconductors based on ij ij i
the Bogoliuvov-de GennegBdG) equationt*~1’ As for oo Ao .
singlet states and triplet states besides equal—spin—pairin‘ﬁhere the order parametefs;” =—Aj °) are given by
states, a map to a parameter space which represents the BdG A2 = /71929374 ¢ Y,
Hamiltonian is consideretf. In the parameter space, the v ! 175717
Dirac monopole exists and the Chern numbers ar&he usual mean field theory leads to the gap equation of
analyzed-® which a solution gives an order parameter. Here we do not
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follow this procedure bug priori assume order parameters
which may be realized for some interactio‘vi§1”2;"3"4. Let
us consider the two cases separatéf: (i) singlet states

Aij :_Zij = lp”|0'y, (lﬂ” = ’ﬁll) and (||) trlplet StateSAij :Aij
=(d;j- )iy, (djj=-dj), where(A;)” =A7"" is a 2x 2 ma-
trix in the spin space and denotes matrix transposéSee
Appendix A for details. Now assume the translational sym-
metry, namelyt; =t(i—j), A;=A(i—j) and also the absence
of a magnetic field, that ig(i—j) to be real. Then, except a

constant, the BdG Hamiltonian is given by &4 matrix hy
as

H =2 cthicy,
k
€00

Ay
hk = AT
kK ~ €&O0o

where_ cl=(cl(k),cl(k),c;(-k),c/(=k))  with  c,(k)
=(1NV)ZEXTic,, =S Ta(0)—p, A= e KA,

A_(—_A(, aﬂd
O 1 '

The order parameter is given by
Akzlﬁkiﬂ'y, Zkz—Ak
for singlet states and
A= (de-oioy, A=A,

for triplet stateq(y is even and, is odd ink).?8
The BAG Hamiltonian has a particle-hole symmetry. If

Uk Uk
h E
k<Vk> k(
u
Vi

is also an eigenstate with energi~whereC=p,K for sin-
glet states an€=-ip,K for triplet statequy andv, are the
two-component vectors ariflis a complex conjugate opera-

tor and the Pauli matriceg operate on the two component
block9.22 Then it is useful to consider

then

T
For singlet states, we have
AKAE = AlAk = |id?oo
and for triplet states
AAL=df?o0+ac- o

with a real vectorg,=id X dﬁ, which we callq helicity (T
represents Hermite conjugate angdomplex conjugate

PHYSICAL REVIEW B 70, 054502(2004)

Ill. CHERN NUMBERS FOR UNITARY STATES

Singlet order and triplet order with vanishireghelicity
are called unitary since

AA! = AlA = oy,
Nonunitary triplet stategq, # 0) will be discussed later. For
unitary states, we define a unitary math)E by
A= AJAR,

where |A =]y for singlet states angA|=|d,| for triplet
states, respectively. Since the spectra are doubly degenerate
as will be shown later, fixing phases of the states is not
enough to determine Chern numbers by the standard
procedure:1%! Instead, one can define non-Abelian vector
potentials and fluxes following definitions of generalized
non-Abelian connectior?.

Let us assume that the states &tefold degeneratéM
=2 in the present unitary casas|a),a=1,---,M. Then a
non-Abelian connection is defined by

AP =(ala,|B), A*F=APdk,

whereaﬂzakﬂ,,uzx,y,z. (Summation over the repeated indi-
cesu is also assumeyA unitary transformation of a degen-
erate state

|@) = [@) = |

+

wo'=o'ow=0,

causes “a gauge transformation”
A=’ Aw+ o'do.
Then the field strength
F=dA+ AOA
is gauge covariant since
F=o0'Fo.

One may also write it as

1
F= 2, Fudk, Odk,

Fu=0d,A,—dA, +[ALA,]
Then “a magnetic field” in thew direction is

B,

Since Tr F is unitary invariant, so iB,. The total flux
passing through the\ plane is given by an integral of the
magnetic fieldB, over the two-dimensional Brillouin zone
T2, (K, is fixed). The first Chern number3$®

1oL
21w o]
2N

This is the Abelian chiral anomaly discussed in the non-
Abelian gauge theori€s® Here we have considered the cu-

~1
= EfMV)\TrFV)\ .

Culky) = T 21270 )¢
VA

dk, dk,B,.
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bic lattice. Extensions to other lattice structures are straight- 0

forward.

IV. DIRAC MONOPOLES IN THE PARAMETER

The BdG equation for thanitary states

( €00 |AK|AE>(Uk> -E (Uk)
IAJAD™ - oo/ \vk “ Vi

reduces to an equation

€k |Ak|) ( Uk ) ( Uk )
® o =E .
<|Ak| ~ €&/, ° AQvi “ ARy

Thus the energies are given by

(R=\e2+|A/» and the states are doubly degenerate. Th

-sin—
|Ra>p = |R! 01 ¢a>p =
€%« cos—
2

We also have

AZB(O-) = <0[|(9M|B>o': (UT&MU)aﬁ

with U=(|1),,|2),). Then the total magnetic field in the pa-
rameter space is

B, =B.(p) +B,(0),

where B, (p)=¢,,Trd,A\(p) and B,(0)=g,,\Tr 3,A,\(0).
Since B, (o) vanishes by the “sum rule” among the filled
bands, we haveB,=B,(p).* It implies that the Chern
numbersC, , of the condensed band in the direction
are given by the sum of the Chern numbers of the two

%ectors|R,),, (a=1,2 which are the eigenstates of the 2

band with energy R is the superconducting condensatesyx 2 Hamiltonians

of pairs. On the other hand, the band with energy +

K=

represents quasiparticle excitations. By a parameterization: h“—( €« %Ay ) _
=0y 2] @

ex=Rcos# and |A/=Rsin#, eigenvectors of condensate
(Ex=-R) are

u
( o >=|R,9>p®|a>(,,
where
.0
—-sin—

2

R, 6),=
Ccos—
2

and|a),, (@=1,2) are arbitrary orthonormalized states in the
o space. Now let us take eigenstates of Aﬁewith eigen-
valuese%a(a=1,2)

Ajla),=e"%a),

to calculate the Chern numbe¥sThe degenerate orthonor-
mal eigenvetor for the condensate baBg=-R is given
by18

9
-sin-|a),
2
) = (”k) =

\Y - 0
k g %a cosE|a>g

The connection is given by
A,ZB = <I7[,Dl|&,u| lr/,,B> = <Ra|0,u|R,B>p<a’|ﬁ>(r + <Ra|RB>p<a|aM|B>U
= Azﬁ(p) 50(,8 + <Ra| Rl8>pAZB(0-) '
where
AﬁB(P) = <Ra|0M|RB>p
with

e'lA] - &

where R, x=Rsinfcos¢,, R,y=Rsinfsing,, and
R,z=Rcosf. Namely they areC,=X,C,,. Now we
have reduced the problem to calculate the Chern numbers
of the eigenstates of the>22 matricesh,. By mapping
from the two-dimensional Brillouin zone to the three-
dimensional space, T2, s (k,,k,) =R, we obtain a
closed oriented surfaceR,(T2,). The wrapping degree
of the map around the origin gives a charge of the
Dirac monopole sitting there. This is the Chern number
C,u(k,u)-m'sl

For the present degenerate case, the map from a two-
dimensional point totwo three-dimensional pointsT?,
5 (k,,ky) —{R,=1,R,=5} defines( fixing k,) the surfaces
{R,=1(T%),R=5(T?)} which determine the two covering
degrees of the maps around the origiNg,,,(k,), (a=1,2).
They give the Chern numbefs, ,, respectively. Since only
the condensed states are filled for the superconducting
ground state, the Chern numbers of the unitary states are
given by

1
CM(k,u) = ZG,U,V)\NV)\(k,u,) ’

N (K,) = 2 N (K,).

The Chern numbers defined here for the unitary supercon-
ductors satisfyC,, (k,) =4 X integer for the singlet order and
C.(k,)=2Xinteger for the triplet ordet®

V. NONUNITARY STATES

In these triplet states, there is no degeneracy in solutions
of the BdG equation. There are four quasiparticle bands,
which are classified by the helicity as
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VI. GAP NODES OF SUPERCONDUCTORS AS A
QUANTUM PHASE TRANSITION

(0 QUL = 20U, O = oy

’

hﬁl//jt:(fﬁﬂ“ |dy*+ qk)‘//jta Up to this point, we have had the superconducting gap
open ink space. However, the above analysis is also useful
. (U . U, for gapless superconductivities. In fact, the nodal structure of
=\, ) =\, ) the superconducting gap is characterized by the topological
* * description. Formally we have treated a three-dimensional
. superconductivity as a collection of two-dimensional sys-
Ve =~ loyls. tems parameterized by, sdg, In R space, closed surfaces
Then states with helicity e and energy E,, parameterized by(k,,k,) are generically away from the
:J_r\yfﬁ+|dk|2+qk, are monopole at the origin. Ak, is changed, the surfaces move
around and they can pass through the monopole. Since the
E: E+q>:U+q7’;?§' distance between a point on a surface and the monopole
where gives half of the energy gagy(k,ky;k,), the gap closes at a

value ofk, when the monopole is on the surface. Thus the
1 (uy u, nodal structure of the three-dimensional superconductivity is
NS point like generically When the two-dimensional Chern
number jumps ak, varies, the superconducting gap has to be
and the orthonormal vectorg 2 are determined as the eigen- closed due to a topological stability of the Chern numbers.

vectors of the reduced>22 Hamiltonian Also the nonzero Chern number implies that the correspond-
- R ing two-dimensional system has a nontrivial topological or-
hiq=U;ghU,q der. Then the superconducting node is considered as the criti-

_ . L~ _cal point of the quantum phase transition.
with energies £,,. The Hamiltonianh, is traceless and it To make the discussion clear, let us take an examgle
can be expressed by as =d,(sink,+i sink)oy,  &=—2t(cosk,+cosk,+cosk,) - x,
(t>0).18 This is an analogue of the Anderson-Brinkman-

hiq= 0 Rig Morel (ABM) state in®He superfluid. For a fixed value &,
whereR. is a real vector given by the surface is reduced to that of the chimlvave order
parameter with a modified chemical potentiat 2t cosk,.
Riq= (e Imd,, Red,.), (We can recover the ABM stati— (0,0 ,d,(k+iky)) in the
limit of u—-6t+0, k—0.) Then there are two quantum
d,-= UI(dk'U)u—- phase transitions changing the Chern numbers between

—2=0 for —6t<< u<-2t, which correspond to gap nodes at
e north and south poles on the Fermi surface, respectively.
n Fig. 1, the surfac&l(T;fy) for this example is shown with
{he monopole at the origin.
Other nodal structures are also expected by changing the
Chern numbers -2 +2 for —2<u<2t and 0=+2 for
2t< u<6t.
hieeE, ) = 8eE, [6eE, ), QulecE, ) = g4k, ), For line nodes, we neeatlditional constraintdo keep the
! ¢ ! ! monopole on the closed surfaces wheiis varied. To make
o G a discussion simple, we take singlet order or triplet order
Q= ( ) [h,Q,]=0, with d,=d,=0 andd, # 0. Further let us require that the order
O  -oyo qoy parameters are real, namely we havinge-reversal symme-
where try. Then the closed surfaces in tRespace collapse into a
board like region on th&®—R, plane and one can expect a
E. (K) =V]eW? +|d* + &4 situation where the monopole moves along the surface when
a k, is changed! Thus a line node appears in the supercon-
(8q=%0k ande,==). Then the standard Chern numlﬁﬁ(kﬂ) ducting gap. As shown in this example, the nodal structure of
in the u direction for a fixedk,, is obtained by the standard the superconductivity has a fundamental relation to topologi-
way? cal order. A detailed discussion on this point will be given
We also have topological invariants in the direction  elsewheré?
Nj(kﬂ). They are wrapping degrees around the origin of the
map (k,, ky) — q(k) =q, which define closed surface$T?,)
in three dimension® Further we have other topological in- ACKNOWLEDGMENTS
variantsN;j(k#)_, which are also wrapping degrees of the map  \ve had useful discussions with M. Sato. We thank A.
around the origin(k,, ky) — R.q(k). (The reduced Hamilto-  vishwanath for the communication regarding Ref. 36. Part of
nians areh,,=R.q- o for the g helicity *q.) the work by Y. H. was supported by a Grant-in-Aid from the

As for the helicity -g, state, one can follow almost the
same procedure and obtain the reduced BdG Hamiltonia
similarly. (See Appendix Il for the details.Here we
can define several topological invariants. As discusse
above, the states withgk helicities and energiesg;, are
nondegenerate,
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Ry

FIG. 1. (Color onling Examples of closed surfacéq(Tfy) which are cut by th€Ry—R; plane. The monopole is at the originsd,
=1, u=-5: (ak,=0 and(b)k,=-27/5.

Japanese Ministry of Science and Culture and the KA- H=Eti-cT o+ S (A G + A%t oy
WASAKI Steel 21st Century Foundation. The work by S. R. e g st T e

was, in part, supported by JSPS.
where we note

APPENDIX A: A MEAN FIELD THEORY ON LATTICE (AJA79) * = (Vija7317270) * (X270 % = V172 7374(x 200 %,

Define a pairing amplitude;” as Vicjrlvz:trsm(xjfirzvl) * (xj‘i’S"“) = Ai‘j’4”3*(xjfif3”4) = (X]f’i'z"'l) * Ai‘l?'lfrz_
xi‘j"" = (CiyCjyr) = _Xjfir’tf_ The self-consistent equation is given by
JF

= _.BF: _ﬂ(H+HO)
aA;JT4"3* 0, e Tre :

The last equation follows from the anticommutation relation
between Fermion operators. Then defining an order param-
eter as
— —BH
. 0=Tre?(c;yCi, — X7,
Aifjfllfz = Vi‘JT1‘72:0304X]fi’304,

. . . . X73%4
and insertingc;, Ci,, =Xi***+ 5;**, the mean field Hamil- i
tonianH is given by

=(Cjo,Cio

R T
H=H+Hy+O(&), _
whereH, is a ground state energy.
We require the S[2) invariance at the mean field level.
Ho=-— > Vﬁlvz:vamxﬁzal*xﬁam ==> A;}4”3*(x}{3"4), Since the Hamiltonian is invariant under the transformation,
ij ij the pairing amplitude is transformed as

054502-5
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010 10109 [_ (T(T (T 0' U'(T
X172 = X( 7172 = (], Cf . ) = (¢, Cly) = uoye’ "2<C,,,IC.(,> triplet A7” = A7 7=-A%",

- Uola'lua'zvzxi(}'lo'zl which are written in matrix notation as singlet

Then the order parameter is transformed as singlet A = _Zij _ (_ ) i ) = yiio,
ij

AT192 = \J9102:93045 9394 __, \'0102 = \/9102:0304y ! 0304
ij ji ij ij ji

:UUlUiuo'za'éAil}'iUé_ lﬁ'” = lﬂji (ever),
Also the ground state energy is invariant7dg— H{="H,. . §
As for the infinitesimal transformation . o~ (mdiidy ) .
trlplet A” = _Aij = 7 X | = (dlj ) (T)lO'y
: Y. 50 di  dj+idj
yee' = cos? -h-osin ?) =8, — 06N - 5,,,
7 d” :_dji (Oda)

Now let us assume a translation symmetry

2 ty =t - j),
we have
A0'1‘7'2 A"Tla'z Aﬁ'laz — 50Iﬁ X (Sa-lg-i + nggé)Agigé- Ai' = A (| - J)!
We further require that the order parameters belong to aﬁnd(ffﬂ\r;f Fe?{ Té(();)olgzl%r\ztsvr: ;]na\elxemomentum representation
irreducible representation of the total sgirS® op+0y®S, K
which consists of the singlet and the triplet. H=H +H
As for the singlet, the base is given by o

Os= —=(A]! - AL), He= 2 e(k)chk)c,(K),
V2 k
J[0)s=0, H; = 2 A% ()l k)l (- k) +h.c.,
JJ0)s=0
In this singlet case, we assume without losing generality e(k) = &kTet(e),
€
AF7 =-Af .
As for the triplet case, the bases are given by A (k) = > ek AT (¢
€
|+ Dr=4A],
As for the order parameters, we have
1 ! ’
0= (a] + A1), A7 (- k) == A7(K),
v
which is a consequence of the Fermion anticommutation re-
|- = All]l’ lation. It is expressed in matrix form as

3Jmyr= T F m@m)ms 1y, Ak ==AK),

Finally we have for the BdG Hamiltonian as
JJm)r=mim)r.

As in the singlet case, we can assume without losing gener- _ T
ality that H =2, c'(k)h(k)c(k) + const.
AT = A7
. . ek)  A(k) ek) A(k)
In the following, we consider the above two cases sepa- h(k) = ATK) - e—K) = RIS

rately:

singlet A7 = - AT 7= A", if e(k) = e(~ k)

054502-6



SUPERCONDUCTIVITY AND ABELIAN CHIRAL...

ci(k)
c(k)
cl(-k)
cl(-k)

c(k) =

The conditione(k)=€e(-k) is guaranteed by assuming the

PHYSICAL REVIEW B 70, 054502(2004)

(o 2 )--(y)

This was considered in previous work.
For the triplet case, usindo-A)(o-B)=A-B+io(A
X B), we have

hopping elements; to be real, that is, the absence of the AA'=i(d-o)oy(-i)oy(d* o) =|d[*+io-(d x d*).

magnetic field.

As for the order parameter, we assume the two possibil

ties as an ansatz as

singlet A(k) = (_ HK) d/(k)) =Koy
(= k) = (k) (even,
A(K)=-A(K),
_ (k) +idy(k)  dy(k) )
triplet A(")‘( 4k ok +idyk)
=(d(k) - @)ioy

d(-k) =-d(k) (odd),
AK) =A(K).

APPENDIX B: REDUCED HAMILTONIANS FOR
NONUNITARY STATES

Let’'s consider the eigenvalue problem

[ 20 -el0)

Due to the particle hole symmetry, it is enough to conskder

as
(e A)(e A)_<52+AAT 0 )
AT -e/\AT -€/) 0 e+AA

AATu=)\%
ATAvV =)\,

E= £+ )% (A=rea).

For the singlet case, we have

€ lp UT UT
€ - u u

¥ gl W

-y - € Uy Ut

l,/I* - € U v|

It decouples as

i:I'husu is determined by the eigen problem by

(o - Qus=%quy, (9=q)),
g=idxd*.
Then as far ag|# 0 (nonunitary casg we haveu, as
AATUi = (|d|2 +0-QUu.= (|d|2i Qusy,

\2=|d?+q

o=
U Ug = Gap-

Note that thisq is real (q*=-id* Xd=id X d*=q). Thus
the quasiparticle energy is given by

E=+\/e+|d*%q.
SinceA'A=oy(o-d*)(o - d)oy=0,(|d|?*~o-g)oy,, we have

ATAv, =~ i0'y(|d|2_ o-quz=-i(|d?+ Qo=
= (|d|2i q)viv

Ve =—lioyUs.

In summary, we constructed eigenstate1das

o[ Us | _ 2 Us
()= @i a )

o[ Ut | _ 2 Us
% =@ aeaal )

Then the energy is given for the helicityystate as
+E, =V +[d|*+q.

The eigenstate of the full Hamiltonigm is determined as a
linear combination of

o)
V2\£v,

+q

u*>+ﬁig —1_( U ):U+q<aiE>
- | —_ +
Vs a2\~ Vy e

_ +i
= U+q7,ig'

as

1
| £ E+q> = a;g?(
V2

+q

77+q _ a.g
+E T +i ’

Bit

(”;q)Tn;q = 5ab1 avb =tE

054502-7
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1/(u, Uy 1 U, u,
U+q = = == . . s
V2\Vvy -V, v2\—loyu_ loyu_

h| £ E.q) = hU,quid = +E U 72
That is

E
hU+q(77J+rEy ) U+q(7]+E17’—E( . -E )
+q

This U,q is 4X 2, which satisfies

Ul Usq=12,
t
u,u O
+ +U4
U+qU+q_( o} v+vf[)'

The vectorsn,g is an eigenvector of the22 matrix

huq=UlhU.q

with energy £+q (h+q7]+E —E+q77+E)
Since hJ,q is traceless as mq TrhUl U, q=Troeu,ul

-Trev, v/ =0 and Hermitian, it is expanded by the Pauli

matrices with real coefficients as

h+q =0 R+q;
_1 Y
Ryg=35Tr 0'h+q,

E= Rl =@+ 07,

For the helicity € state, we change,, v,—u_, v_in
U.q to obtainU_g as

1/u. u_ u_ u_
Ug=—% =\ . . ,
V2\Vo —Vo —loyu, loyu,

PHYSICAL REVIEW B 70, 054502(2004)
" o=yt —
h.q=UlhU_q= o Ry,

— l -
R_q = ETF O'h_q

_—
Eq= |R—q| =Ve+|d?-q.

Further let us define

1 [(u,
Uu=-—-=
\y’E(U_

and rewriteU,, as

1,
("

1 1
u_q:( S )( 2>Ucrz.
_|0'y 12

Then we have foR,, (d=0-d)

Riq==Tr UT( d)u
2 i a* €

Red, -

1T ( e—ilmd,_
==Tr
2 %\ et+ilmd,_

~Red,. ) =(¢,Imd,_,Red,.)

d,_=uldu_=ul(e-d)u_

As for the negative helicity state, a similar reduced
Hamiltonian is obtained by a parallel argument as

R.q=(e-Imd,_Red,),

d,_=uld*u_=ul(o-d*)u_.
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