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Motivated by the geometric character of spin Hall conductance, the topological invariants of generic super-
conductivity are discussed based on the Bogoliuvov-de Gennes equation on lattices. They are given by the
Chern numbers of degenerate condensate bands for unitary order, which are realizations of Abelian chiral
anomalies for non-Abelian connections. The three types of Chern numbers for thex, y, andz directions are
given by covering degrees of some doubled surfaces around the Dirac monopoles. For nonunitary states,
several topological invariants are defined by analyzing the so-calledq helicity. Topological origins of the nodal
structures of superconducting gaps are also discussed.
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I. INTRODUCTION

The importance of quantum-mechanical phases in con-
densed matter physics has been recognized and emphasized
for recent several decades. The fundamental character of a
vector potential is evident in the Aharonov-Bohm effect
where theUs1d gauge structure is essential and a magnetic
field in itself plays only a secondary role.1 Topological struc-
tures in quantum gauge field theories have also been studied
and extensive knowledge has been accumulated.2 Quantum
mechanics itself supplies a fundamental gauge structure.3 It
is known as geometrical phases in many different contexts,
where gauge structures emerge by restricting physical
spaces. The quantum Hall effect is one of the key phenomena
to establish the importance of geometrical phases.4 The to-
pological character of the Hall conductance was first realized
by the Chern number expression, where the Bloch functions
define “vector potentials” in the magnetic Brillouin zone ac-
companied with a gauge structure.5 Further the ground state
of the fractional quantum Hall effect is a complex many-
body state where another kind of gauge structure emerges.6

These quantum states with nontrivial geometrical phases are
characterized by topological orders which extend an idea of
order parameters in statistical mechanics to the quantum
states without any spontaneous symmetry breaking.7 We also
point out an importance of boundary effects for topologically
nontrivial systems. Bulk properties are closely related to
edge states and localized states near impurities and
vortices.8–12

Topologically nontrivial structures in superconductors
also have a long history. Recently, following a prediction
of flux phases for correlated electron systems,13 spin Hall
conductance is defined for superconductors based on
the Bogoliuvov-de Gennes(BdG) equation.14–17 As for
singlet states and triplet states besides equal-spin-pairing
states, a map to a parameter space which represents the BdG
Hamiltonian is considered.18 In the parameter space, the
Dirac monopole exists and the Chern numbers are
analyzed.19

In this paper, we establish a topological characterization
of generalsuperconductors based on the BdG equation on
lattices. The energy spectrum of the BdG Hamiltonian are
fully used to calculate the Chern numbers of the supercon-
ductors. As for the unitary superconductors, condensed mat-
ter realizations of chiral anomalies for non-Abelian connec-
tions are given explicitly. Topological consideration is useful
to distinguish superconductivities with the same pairing sym-
metry. The present analysis also clarifies nodal structures of
superconducting gaps with various anisotropic order param-
eters, which is closely related to the quantum Hall effect in
three dimensions.20,21 Various types of the nodal structures
are not accidental but have fundamental topological origins.
A possible time-reversal symmettry-breaking and an uncon-
ventional gap structure are proposed based on the
experiments.22

II. BOGOLIUVOV-DE GENNES HAMILTONIAN

Let us start from the following Hamiltonian on lattices
with spin-rotation symmetry:

H = o
i j

ti jcis
† cjs + o

i j

Vij
s1s2;s3s4cis1

† cjs2

† cjs3
cis4

− mo
i

cis
† cis

wherecis is the electron annihilation operator with spins at
site i, tij = tji*, Vij

s1s2;s3s4=sVij
s4s3;s2s1d*, Vij

s1s2;s3s4

=Vji
s2s1;s4s3, andm is a chemical potential. Summations over

repeated spin indicess are implied hereafter.
The mean field Bardeen–Cooper–Schrieffer approxima-

tion leads to

H = o
i j

ti jcis
† cjs + o

i j

sDi j
s4s3*cjs3

cis4
+ h . c . d − mo

i

cis
† cis,

where the order parameterssDi j
ss8=−D ji

s8sd are given by

Di j
s1s2 = Vij

s1s2;s3s4kcjs3
cis4

l.

The usual mean field theory leads to the gap equation of
which a solution gives an order parameter. Here we do not
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follow this procedure buta priori assume order parameters
which may be realized for some interactionsVij

s1s2;s3s4. Let
us consider the two cases separately:26,27 (i) singlet states

Di j =−D̃i j =ci j isy, sci j =c jid and (ii ) triplet statesDi j =D̃i j

=sdi j ·sdisy, sdi j =−d jid, wheresDi jdss8=Di j
ss8 is a 232 ma-

trix in the spin space and̃ denotes matrix transpose.(See
Appendix A for details.) Now assume the translational sym-
metry, namely,tij = tsi − jd, Di j =Dsi − jd and also the absence
of a magnetic field, that is,tsi − jd to be real. Then, except a
constant, the BdG Hamiltonian is given by a 434 matrixhk
as

H = o
k

ck
†hkck,

hk = Seks0 Dk

Dk
† − eks0

D
where ck

†=sc↑
†skd ,c↓

†skd ,c↑s−kd ,c↓s−kdd with csskd
=s1/ÎVdo je

ik·r jcjs, «k=o,e
−ik·r,ts,d−m, Dk=o,e

−ik·r,Ds,d,
D−k=−D̃k, and

s0 = S1 0

0 1
D .

The order parameter is given by

Dk = ckisy, D̃k = − Dk

for singlet states and

Dk = sdk · sdisy, D̃k = Dk

for triplet states(ck is even anddk is odd ink).28

The BdG Hamiltonian has a particle-hole symmetry. If

hkSuk

vk
D = EkSuk

vk
D ,

then

CSuk

vk
D

is also an eigenstate with energy −Ek whereC=rxK for sin-
glet states andC=−iryK for triplet states(uk andvk are the
two-component vectors andK is a complex conjugate opera-
tor and the Pauli matricesr operate on the two component
blocks).33 Then it is useful to consider

hk
2 = ek

2r0 + SDkDk
† 0

0 Dk
†Dk

D .

For singlet states, we have

DkDk
† = Dk

†Dk = ucku2s0

and for triplet states

DkDk
† = udku2s0 + qk · s

with a real vectorqk= idk3dk
* , which we callq helicity (†

represents Hermite conjugate andp complex conjugate).

III. CHERN NUMBERS FOR UNITARY STATES

Singlet order and triplet order with vanishingq helicity
are called unitary since

DkDk
† = Dk

†Dk ~ s0.

Nonunitary triplet statessqkÞ0d will be discussed later. For
unitary states, we define a unitary matrixDk

0 by

Dk = uDkuDk
0,

where uDku= ucku for singlet states anduDku= udku for triplet
states, respectively. Since the spectra are doubly degenerate
as will be shown later, fixing phases of the states is not
enough to determine Chern numbers by the standard
procedure.5,10,11 Instead, one can define non-Abelian vector
potentials and fluxes following definitions of generalized
non-Abelian connections.29

Let us assume that the states areM-fold degenerate(M
=2 in the present unitary case) as ual ,a=1,¯ ,M. Then a
non-Abelian connection is defined by

Am
ab = kau]mubl, Aab = Am

abdkm

where]m=]km
,m=x,y,z. (Summation over the repeated indi-

cesm is also assumed.) A unitary transformation of a degen-
erate state

ual → uāl = ualvaā

vv† = v†v = s0

causes “a gauge transformation”

Ā = v†Av + v†dv.

Then the field strength

F = dA +A ∧A
is gauge covariant since

F̄ = v†Fv.

One may also write it as

F =
1

2!
Fmndkm ∧ dkn,

Fmn = ]mAn − ]nAm + fAm,Ang.

Then “a magnetic field” in them direction is

Bm = 1
2emnlTrFnl.

Since TrF is unitary invariant, so isBm. The total flux
passing through thenl plane is given by an integral of the
magnetic fieldBm over the two-dimensional Brillouin zone
Tnl

2 (km is fixed). The first Chern number is2,28

Cmskmd =
1

2!
emnl

1

2pi
E

Tnl
2

TrF =
1

2!

1

2pi
E

Tnl
2

dkn ∧ dklBm.

This is the Abelian chiral anomaly discussed in the non-
Abelian gauge theories.2,30 Here we have considered the cu-
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bic lattice. Extensions to other lattice structures are straight-
forward.

IV. DIRAC MONOPOLES IN THE PARAMETER

The BdG equation for theunitary states

S eks0 uDkuDk
0

uDkusDk
0d−1 − eks0

DSuk

vk
D = EkSuk

vk
D

reduces to an equation

S ek uDku
uDku − ek

D
r

^ s0S uk

Dk
0vk

D = EkS uk

Dk
0vk

D .

Thus the energies are given by

Ek = ±R

sR=Î«k
2+ uDku2d and the states are doubly degenerate. The

band with energy −R is the superconducting condensates
of pairs. On the other hand, the band with energy +R
represents quasiparticle excitations. By a parameterization:
«k=Rcosu and uDku=Rsinu, eigenvectors of condensate
sEk=−Rd are

S uk

Dk
0vk

D = uR,ulr ^ uals,

where

uR,ulr =1− sin
u

2

cos
u

2
2

anduals, sa=1,2d are arbitrary orthonormalized states in the
s space. Now let us take eigenstates of theDk

0 with eigen-
valuese−ifasa=1,2d

Dk
0uals = e−ifauals

to calculate the Chern numbers.34 The degenerate orthonor-
mal eigenvetor for the condensate bandEk=−R is given
by18

ucal = Suk

vk
D

a

=1 − sin
u

2
uals

eifa cos
u

2
uals

2 .

The connection is given by

Am
ab = kcau]mucbl = kRau]muRblrkaubls + kRauRblrkau]mubls

= Am
absrddab + kRauRblrAm

abssd,

where

Am
absrd = kRau]muRblr

with

uRalr = uR,u,falr =1 − sin
u

2

eifa cos
u

2
2 .

We also have

Am
abssd = kau]mubls = sU†]mUdab

with U=su1ls , u2lsd. Then the total magnetic field in the pa-
rameter space is

Bm = Bmsrd + Bmssd,

where Bmsrd=«mnlTr]nAlsrd and Bmssd=«mnlTr ]nAlssd.
Since Bmssd vanishes by the “sum rule” among the filled
bands, we haveBm=Bmsrd.35 It implies that the Chern
numbersCa,m of the condensed band in them direction
are given by the sum of the Chern numbers of the two
vectors uRalr, sa=1,2d which are the eigenstates of the 2
32 Hamiltonians

hk
a = S ek eifauDku

e−ifauDku − ek
D = s ·Ra,

where Ra,X=Rsinu cosfa, Ra,Y=Rsinu sinfa, and
Ra,Z=Rcosu. Namely they areCm=oaCa,m. Now we
have reduced the problem to calculate the Chern numbers
of the eigenstates of the 232 matriceshk

a. By mapping
from the two-dimensional Brillouin zone to the three-
dimensional space,Tnl

2 { skn ,kld→Ra, we obtain a
closed oriented surfaceRasTnl

2 d. The wrapping degree
of the map around the origin gives a charge of the
Dirac monopole sitting there. This is the Chern number
Cmskmd.18,31

For the present degenerate case, the map from a two-
dimensional point to two three-dimensional pointsTnl

2

{ skn ,kld→ hRa=1,Ra=2j defines ( fixing km) the surfaces
hRa=1sTnl

2 d ,Ra=2sTnl
2 dj which determine the two covering

degrees of the maps around the origins,Na;nlskmd, sa=1,2d.
They give the Chern numbersCa,m, respectively. Since only
the condensed states are filled for the superconducting
ground state, the Chern numbers of the unitary states are
given by

Cmskmd =
1

2!
emnlNnlskmd,

Nnlskmd = o
a

Na;nlskmd.

The Chern numbers defined here for the unitary supercon-
ductors satisfyCnlskmd=43 integer for the singlet order and
Cnlskmd=23 integer for the triplet order.36

V. NONUNITARY STATES

In these triplet states, there is no degeneracy in solutions
of the BdG equation. There are four quasiparticle bands,
which are classified by theq helicity as
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ss · qkdu± = ±qku±, qk = uqku,

hk
2c j

± = sek
2 + udku2 ± qkdc j

±,

c1
± = Su±

v±
D, c2

± = S u±

− v±
D ,

v± = − isyu7.

Then states with helicity +qk and energy ±E+q

=±Îek
2+ udku2+qk, are

u ± E+ql = U+qh±E
+q ,

where

U+q =
1
Î2

Su+ u+

v+ − v+
D

and the orthonormal vectorsh±E
+q are determined as the eigen-

vectors of the reduced 232 Hamiltonian

h̃+q = U+q
† hU+q

with energies ±E+q. The Hamiltonianh̃+q is traceless and it
can be expressed by as

h̃+q = s · R+q

whereR+q is a real vector given by

R+q = se, Im d+−, Red+−d,

d+− = u+
†sdk · sdu−.

As for the helicity −qk state, one can follow almost the
same procedure and obtain the reduced BdG Hamiltonian
similarly. (See Appendix II for the details.) Here we
can define several topological invariants. As discussed
above, the states with ±qk helicities and energies ±E±q are
nondegenerate,

hku«eE«q
l = «eE«q

u«eE«q
l, Qku«eE«q

l = «qu«eE«q
l,

Qk = Ss · qk O

O − sys · qksy
D, fhk,Qkg = 0,

where

E«q
skd = Îu«ku2 + udku2 + «q

(«q=±qk and«e=±). Then the standard Chern numberCm
0skmd

in the m direction for a fixedkm is obtained by the standard
way.5

We also have topological invariants in them direction
Nm

qskmd. They are wrapping degrees around the origin of the
mapskn ,kld→qskd=qk, which define closed surfacesqsTnl

2 d
in three dimensions.18 Further we have other topological in-
variantsNm

±skmd, which are also wrapping degrees of the map
around the origin,skn ,kld→R±qskd. (The reduced Hamilto-

nians areh̃±q=R±q·s for the q helicity ±qk.)

VI. GAP NODES OF SUPERCONDUCTORS AS A
QUANTUM PHASE TRANSITION

Up to this point, we have had the superconducting gap
open ink space. However, the above analysis is also useful
for gapless superconductivities. In fact, the nodal structure of
the superconducting gap is characterized by the topological
description. Formally we have treated a three-dimensional
superconductivity as a collection of two-dimensional sys-
tems parameterized by, say,kz. In R space, closed surfaces
parameterized byskx,kyd are generically away from the
monopole at the origin. Askz is changed, the surfaces move
around and they can pass through the monopole. Since the
distance between a point on a surface and the monopole
gives half of the energy gapEgskx,ky;kzd, the gap closes at a
value of kz when the monopole is on the surface. Thus the
nodal structure of the three-dimensional superconductivity is
point like generically. When the two-dimensional Chern
number jumps askz varies, the superconducting gap has to be
closed due to a topological stability of the Chern numbers.
Also the nonzero Chern number implies that the correspond-
ing two-dimensional system has a nontrivial topological or-
der. Then the superconducting node is considered as the criti-
cal point of the quantum phase transition.

To make the discussion clear, let us take an exampleDk
=dzssinkx+ i sinkydsx, ek=−2tscoskz+cosky+coskzd−m,
st.0d.18 This is an analogue of the Anderson-Brinkman-
Morel (ABM ) state in3He superfluid. For a fixed value ofkz,
the surface is reduced to that of the chiralp-wave order
parameter with a modified chemical potentialm−2t coskz.
(We can recover the ABM statedk→ s0,0,dzskx+ ikydd in the
limit of m→−6t+0, k →0.) Then there are two quantum
phase transitions changing the Chern numbers between
−2�0 for −6t,m,−2t, which correspond to gap nodes at
the north and south poles on the Fermi surface, respectively.
In Fig. 1, the surfaceR1sTxy

2 d for this example is shown with
the monopole at the origin.

Other nodal structures are also expected by changing the
Chern numbers −2� +2 for −2t,m,2t and 0� +2 for
2t,m,6t.

For line nodes, we needadditional constraintsto keep the
monopole on the closed surfaces whenkz is varied. To make
a discussion simple, we take singlet order or triplet order
with dx=dy=0 anddzÞ0. Further let us require that the order
parameters are real, namely we have atime-reversal symme-
try. Then the closed surfaces in theR space collapse into a
board like region on theRX–RZ plane and one can expect a
situation where the monopole moves along the surface when
kz is changed.31 Thus a line node appears in the supercon-
ducting gap. As shown in this example, the nodal structure of
the superconductivity has a fundamental relation to topologi-
cal order. A detailed discussion on this point will be given
elsewhere.32
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APPENDIX A: A MEAN FIELD THEORY ON LATTICE

Define a pairing amplitudexij
ss8 as

xij
ss8 = kciscjs8l = − xji

s8s.

The last equation follows from the anticommutation relation
between Fermion operators. Then defining an order param-
eter as

Di j
s1s2 = Vij

s1s2;s3s4xji
s3s4,

and insertingcjs3
cis4

=xji
s3s4+d ji

s3s4,, the mean field Hamil-
tonianH is given by

H = H + H0 + Osd2d,

H0 = − o
i j

Vij
s1s2;s3s4xji

s2s1*xji
s3s4 = − o

i j

Di j
s4s3*sxji

s3s4d,

H = o
i j

ti jcis
† cjs + o

i j

sDi j
s4s3*cjs3

cis4
+ Di j

s1s2cis1

† cjs2

† d,

where we note

sDi j
s4s3d * = sVij

s4s3;s2s1d * sxji
s2s1d* = Vij

s1s2;s3s4sxji
s2s1d*,

Vij
s1s2;s3s4sxji

s2s1d * sxji
s3s4d = Di j

s4s3*sxji
s3s4d = sxji

s2s1d * Di j
s1s2.

The self-consistent equation is given by

]F

]Di j
s4s3* = 0, e−bF = Tr e−bsH+H0d,

0 = Tr e−bHscjs3
cis4

− xji
s3s4d,

xji
s3s4 = kcjs3

cis4
lH,

Di j
s1s2 = Vij

s1s2;s3s4kcjs3
cis4

lH,

whereH0 is a ground state energy.
We require the SU(2) invariance at the mean field level.

Since the Hamiltonian is invariant under the transformation,
the pairing amplitude is transformed as

FIG. 1. (Color online) Examples of closed surfacesR1sTxy
2 d which are cut by theRY−RZ plane. The monopole is at the origin,t=dz

=1, m=−5: (a)kz=0 and(b)kz=−2p /5.
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xij
s1s2 → xij8

s1s2 = kcjs2
8 cis1

8 l8 = kcjs2
8 cis1

8 l = Uss18Us8s28kcjs28
cis18

l

= Us1s18Us2s28xij
s18s28.

Then the order parameter is transformed as

Di j
s1s2 = Vij

s1s2;s3s4xji
s3s4 → Di j8

s1s2 = Vij
s1s2;s3s4xji8

s3s4

=Us1s18Us2s28Di j
s18s28.

Also the ground state energy is invariant asH0→H08=H0.
As for the infinitesimal transformation

Uss8 = Scos
du

2
− n̂ · s sin

du

2
D

ss8
= dss8 − duin̂ · sss8,

s=
1

2
s,

we have

dDi j
s1s2 = Di j8

s1s2 − Di j
s1s2 = duin̂ · sss1s18

+ ss2s28
dDi j

s18s28.

We further require that the order parameters belong to an
irreducible representation of the total spinJ=s^ s0+s0 ^ s,
which consists of the singlet and the triplet.

As for the singlet, the base is given by

u0lS=
1
Î2

sDi j
↑↓ − Di j

↓↑d,

J±u0lS= 0,

Jzu0lS= 0.

In this singlet case, we assume without losing generality

Di j
ss8 = − Di j

s8s.

As for the triplet case, the bases are given by

u + 1lT = Di j
↑↑,

u0lT =
1
Î2

sDi j
↑↓ + Di j

↓↑d,

u− 1lT = Di j
↓↓,

J±umlT = Îs1 7 mds2 ± mdum± 1lT,

JzumlT = mumlT.

As in the singlet case, we can assume without losing gener-
ality that

Di j
ss8 = Di j

s8s.

In the following, we consider the above two cases sepa-
rately:

singlet Di j
ss8 = − Di j

s8s = D ji
ss8,

triplet Di j
ss8 = Di j

s8s = − D ji
ss8,

which are written in matrix notation as singlet

singlet Di j = − D̃i j = S ci j

− ci j
D = ci j isy,

ci j = c ji sevend,

triplet Di j = − D̃i j = S− dij
x + idij

y dij
z

dij
z dij

x + idij
y D = sdi j · sdisy

di j = − d ji soddd.

Now let us assume a translation symmetry

tij = tsi − jd,

Di j
ss8 = Dss8si − jd,

and define Fermion operators in a momentum representation
cj =s1/ÎVdoke

ik·r jcskd. Now we have

H = Ht + Hi ,

Ht = o
k

eskdcs
†skdcsskd,

Hi = o
k

Dss8skdcs
†skdcs8

† s− kd + h.c.,

eskd = o
,

eik·r,ts,d,

Dss8skd = o
,

e−ik·r,Dss8s,d.

As for the order parameters, we have

Dss8s− kd = − Ds8sskd,

which is a consequence of the Fermion anticommutation re-
lation. It is expressed in matrix form as

Ds− kd = − D̃skd.

Finally we have for the BdG Hamiltonian as

H = o
k

8
c†skdhskdcskd + const.

hskd = S eskd Dskd
D†skd − es− kd

D = S eskd Dskd
D†skd − eskd

D
if eskd = es− kd
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cskd =1
c↑skd
c↓skd

c↑
†s− kd

c↓
†s− kd

2 .

The conditioneskd=es−kd is guaranteed by assuming the
hopping elementstij to be real, that is, the absence of the
magnetic field.

As for the order parameter, we assume the two possibili-
ties as an ansatz as

singlet Dskd = S cskd
− cskd

D = cskdisy

cs− kd = cskdsevend,

D̃skd = − Dskd,

triplet D skd = S− dxskd + idyskd dzskd
dzskd dxskd + idyskd

D
= sdskd · sdisy

ds− kd = − dskd soddd,

D̃skd = Dskd.

APPENDIX B: REDUCED HAMILTONIANS FOR
NONUNITARY STATES

Let’s consider the eigenvalue problem

S e D

D† − e
DSu

v
D = ESu

v
D .

Due to the particle hole symmetry, it is enough to considerh2

as

S e D

D† − e
DS e D

D† − e
D = Se2 + DD† 0

0 e2 + D†D
D

DD†u = l2u

D†Dv = l2u,

E = ± Îe2 + l2, sl = reald.

For the singlet case, we have

1
e c

e − c

− c* − e

c* − e
21

u↑
u↓
v↑
v↓
2 = E1

u↑
u↓
v↑
v↓
2 .

It decouples as

S e c

c* − e
DSu↑

v↓
D = ESu↑

v↓
D

Se c*

c − e
DSv↓

u↑
D = − ESv↓

u↑
D .

This was considered in previous work.18

For the triplet case, usingss ·Adss ·Bd=A·B+ issA
3Bd, we have

DD† = isd · sdsys− idsysd * · sd = udu2 + is · sd 3 d * d.

Thusu is determined by the eigen problem by

ss · qdu± = ±qu±, sq = uqud,

q = id 3 d * .

Then as far asqÞ0 (nonunitary case), we haveu± as

DD†u± = sudu2 + s · qdu± = sudu2 ± qdu±,

l2 = udu2 ± q

ua
†ub = dab.

Note that thisq is real sq* =− id* 3d= id3d*= qd. Thus
the quasiparticle energy is given by

E = ±Îe2 + udu2 ± q.

SinceD†D=syss ·d* dss ·ddsy=sysudu2−s ·qdsy, we have

D†Dv± = − isysudu2 − s · qdu7 = − isudu2 ± qdsyu7

= sudu2 ± qdv±,

v± = − isyu7.

In summary, we constructed eigenstates ofh2 as

h2Su±

v±
D = se2 + udu2 ± qdSu±

v±
D

h2S u±

− v±
D = se2 + udu2 ± qdS u±

− v±
D .

Then the energy is given for the helicity +q state as

±E+q = ±Îe2 + udu2 + q.

The eigenstate of the full Hamiltonianh is determined as a
linear combination of

1
Î2

S u+

±v+
D

as

u ± E+ql = a±E
+q 1

Î2
Su+

v+
D + b±E+q

+q 1
Î2

S u+

− v+
D = U+qSa±E

+q

b±E
+q D

; U+qh±E
+q ,

h±E
+q = Sa±E

+q

b±E
+q D ,

sha
+qd†hb

+q = dab, a,b = ± E
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U+q =
1
Î2

Su+ u+

v+ − v+
D =

1
Î2

S u+ u+

− isyu− isyu−
D ,

hu ± E+ql = hU+qh±E
+q = ±E+qU+qh±E

+q .

That is

hU+qsh+E
+q,h−E

+qd = U+qsh+E
+q,h−E

+qdSE+q

− E+q
D .

This U+q is 432, which satisfies

U+q
† U+q = I 2,

U+qU+q
† = Su+u+

† O

O v+v+
† D .

The vectorh±E
+q is an eigenvector of the 232 matrix

h̃+q = U+q
† hU+q

with energy ±E+q sh̃+qh±E
+q =±E+qh±E

+qd.
Since h̃+q is traceless as Trh̃+q=TrhU+q

† U+q=Tr2eu+u+
†

−Tr2ey+y+
†=0 and Hermitian, it is expanded by the Pauli

matrices with real coefficients as

h̃+q = s · R+q,

R+q = 1
2Tr sh̃+q,

E+q = uR+qu = Îe2 + udu2 + q.

For the helicity −q state, we changeu+, y+→u−, y− in
U+q to obtainU−q as

U−q =
1
Î2

Su− u−

v− − v−
D = S u− u−

− isyu+ isyu+
D ,

h̃−q = U−q
† hU−q = s · R−q,

R−q =
1

2
Tr sh̃−q

h̃−qh±E
−q = ±E−qh±E

−q ,

E−q = uR−qu = Îe2 + udu2 − q.

Further let us define

U =
1
Î2

Su+ u+

u− − u−
D

and rewriteU±q as

U+q = S12

− isy
DU

U−q = S12

− isy
DS 12

12
DUsz.

Then we have forR+q, sd” =s·dd

R+q =
1

2
Tr sU†S e d”

d” * − e
DU

=
1

2
TrsS Red+− e − iIm d+−

e + iIm d+− − Red+−
D = se,Im d+−,Red+−d

d+− = u+
†d”u− = u+

†ss·ddu−.

As for the negative helicity state, a similar reduced
Hamiltonian is obtained by a parallel argument as

R−q = se,− Im d+−
* ,Red+−

* d,

d+−
* = u+

†d” * u− = u+
†ss · d * du−.
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