230 research outputs found

    Human Angiostrongyliasis Outbreak in Dali, China

    Get PDF
    Angiostrongyliasis, caused by the rat lungworm Angiostrongylus cantonensis, is a potentially fatal food-borne disease. It is endemic in parts of Southeast Asia, the Pacific Islands, Australia, and the Caribbean. Outbreaks have become increasingly common in China due to the spread of efficient intermediate host snails, most notably Pomacea canaliculata. However, infections are difficult to detect since the disease has a rather long incubation period and few diagnostic clinical symptoms. Reliable diagnostic tests are not widely available. The described angiostrongyliasis epidemic in Dali, China lasted for eight months. Only 11 of a total of 33 suspected patients were clinically confirmed based on a set of diagnostic criteria. Our results demonstrate that the rapid and correct diagnosis of the index patient is crucial to adequately respond to an epidemic, and a set of standardized diagnostic procedures is needed to guide clinicians. Integrated control and management measures including health education, clinical guidelines and a hospital-based surveillance system, should be implemented in areas where snails are a popular food item

    Immature Dengue Virus: A Veiled Pathogen?

    Get PDF
    Cells infected with dengue virus release a high proportion of immature prM-containing virions. In accordance, substantial levels of prM antibodies are found in sera of infected humans. Furthermore, it has been recently described that the rates of prM antibody responses are significantly higher in patients with secondary infection compared to those with primary infection. This suggests that immature dengue virus may play a role in disease pathogenesis. Interestingly, however, numerous functional studies have revealed that immature particles lack the ability to infect cells. In this report, we show that fully immature dengue particles become highly infectious upon interaction with prM antibodies. We demonstrate that prM antibodies facilitate efficient binding and cell entry of immature particles into Fc-receptor-expressing cells. In addition, enzymatic activity of furin is critical to render the internalized immature virus infectious. Together, these data suggest that during a secondary infection or primary infection of infants born to dengue-immune mothers, immature particles have the potential to be highly infectious and hence may contribute to the development of severe disease

    Economic Value of Dengue Vaccine in Thailand

    Get PDF
    With several candidate dengue vaccines under development, this is an important time to help stakeholders (e.g., policy makers, scientists, clinicians, and manufacturers) better understand the potential economic value (cost-effectiveness) of a dengue vaccine, especially while vaccine characteristics and strategies might be readily altered. We developed a decision analytic Markov simulation model to evaluate the potential health and economic value of administering a dengue vaccine to an individual (≤ 1 year of age) in Thailand from the societal perspective. Sensitivity analyses evaluated the effects of ranging various vaccine (e.g., cost, efficacy, side effect), epidemiological (dengue risk), and disease (treatment-seeking behavior) characteristics. A ≥ 50% efficacious vaccine was highly cost-effective [< 1× per capita gross domestic product (GDP) (4,289)]uptoatotalvaccinationcostof4,289)] up to a total vaccination cost of 60 and cost-effective [< 3× per capita GDP (12,868)]uptoatotalvaccinationcostof12,868)] up to a total vaccination cost of 200. When the total vaccine series was $1.50, many scenarios were cost saving

    Dengue Virus Infection-Enhancing Activity in Serum Samples with Neutralizing Activity as Determined by Using FcγR-Expressing Cells

    Get PDF
    Dengue has become a major international public health concern in recent decades. There are four dengue virus serotypes. Recovery from infection with one serotype confers life-long protection to the homologous serotype but only partial protection to subsequent infection with other serotypes. Secondary infection with a serotype different from that in primary infection increases the risk of development of severe complications. Antibodies may play two competing roles during infection: virus neutralization that leads to protection and recovery, or infection-enhancement that may cause severe complications. Progress in vaccine development has been hampered by limited understanding on protective immunity against dengue virus infection. We report the neutralization activity and infection-enhancement activity in individuals with dengue in Malaysia. We show that infection-enhancement activity is present when neutralizing activity is absent or low, and cross-reactive neutralizing activity may be hampered by infection-enhancing activity. Conventional assays for titration of neutralizing antibody do not consider infection-enhancement activity. We used an alternative assay that determines the sum of neutralizing and infection-enhancement activity in sera from dengue patients. In addition to providing insights into antibody responses during infection, the alternative assay provides a new platform for the study of immune responses to vaccine

    IFITM Proteins Restrict Antibody-Dependent Enhancement of Dengue Virus Infection

    Get PDF
    Interferon-inducible transmembrane (IFITM) proteins restrict the entry processes of several pathogenic viruses, including the flaviviruses West Nile virus and dengue virus (DENV). DENV infects cells directly or via antibody-dependent enhancement (ADE) in Fc-receptor-bearing cells, a process thought to contribute to severe disease in a secondary infection. Here we investigated whether ADE-mediated DENV infection bypasses IFITM-mediated restriction or whether IFITM proteins can be protective in a secondary infection. We observed that IFITM proteins restricted ADE-mediated and direct infection with comparable efficiencies in a myelogenous leukemia cell line. Our data suggest that IFITM proteins can contribute to control of secondary DENV infections

    Neutralizing and non-neutralizing monoclonal antibodies against dengue virus E protein derived from a naturally infected patient

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Antibodies produced in response to infection with any of the four serotypes of dengue virus generally provide homotypic immunity. However, prior infection or circulating maternal antibodies can also mediate a non-protective antibody response that can enhance the course of disease in a subsequent heterotypic infection. Naturally occurring human monoclonal antibodies can help us understand the protective and pathogenic roles of the humoral immune system in dengue virus infection.</p> <p>Results</p> <p>Epstein-Barr Virus (EBV) transformation of B cells isolated from the peripheral blood of a human subject with previous dengue infection was performed. B cell cultures were screened by ELISA for antibodies to dengue (DENV) envelope (E) protein. ELISA positive cultures were cloned by limiting dilution. Three IgG1 human monoclonal antibodies (HMAbs) were purified and their binding specificity to E protein was verified by ELISA and biolayer interferometry. Neutralization and enhancement assays were conducted in epithelial and macrophage-like cell lines, respectively. All three HMAbs bound to E from at least two of the four DENV serotypes, one of the HMAbs was neutralizing, and all were able to enhance DENV infection.</p> <p>Conclusions</p> <p>HMAbs against DENV can be successfully generated by EBV transformation of B cells from patients at least two years after naturally acquired DENV infections. These antibodies show different patterns of cross-reactivity, neutralizing, and enhancement activity.</p

    Decision Tree Algorithms Predict the Diagnosis and Outcome of Dengue Fever in the Early Phase of Illness

    Get PDF
    Dengue illness appears similar to other febrile illness, particularly in the early stages of disease. Consequently, diagnosis is often delayed or confused with other illnesses, reducing the effectiveness of using clinical diagnosis for patient care and disease surveillance. To address this shortcoming, we have studied 1,200 patients who presented within 72 hours from onset of fever; 30.3% of these had dengue infection, while the remaining 69.7% had other causes of fever. Using body temperature and the results of simple laboratory tests on blood samples of these patients, we have constructed a decision algorithm that is able to distinguish patients with dengue illness from those with other causes of fever with an accuracy of 84.7%. Another decision algorithm is able to predict which of the dengue patients would go on to develop severe disease, as indicated by an eventual drop in the platelet count to 50,000/mm3 blood or below. Our study shows a proof-of-concept that simple decision algorithms can predict dengue diagnosis and the likelihood of developing severe disease, a finding that could prove useful in the management of dengue patients and to public health efforts in preventing virus transmission

    Dengue viruses cluster antigenically but not as discrete serotypes.

    Get PDF
    The four genetically divergent dengue virus (DENV) types are traditionally classified as serotypes. Antigenic and genetic differences among the DENV types influence disease outcome, vaccine-induced protection, epidemic magnitude, and viral evolution. We characterized antigenic diversity in the DENV types by antigenic maps constructed from neutralizing antibody titers obtained from African green monkeys and after human vaccination and natural infections. Genetically, geographically, and temporally, diverse DENV isolates clustered loosely by type, but we found that many are as similar antigenically to a virus of a different type as to some viruses of the same type. Primary infection antisera did not neutralize all viruses of the same DENV type any better than other types did up to 2 years after infection and did not show improved neutralization to homologous type isolates. That the canonical DENV types are not antigenically homogeneous has implications for vaccination and research on the dynamics of immunity, disease, and the evolution of DENV.This research was supported in part by the Intramural Research Program of the US NIH, National Institute of Allergy and Infectious Diseases, European Union (EU) FP7 programs EMPERIE (223498) and ANTIGONE (278976), Human Frontier Science Program (HFSP) program grant P0050/2008, the NIH Director’s Pioneer Award DP1-OD000490-01, the FIRST program from the Bill and Melinda Gates Foundation and the Instituto Carlos Slim de la Salud (E.H.). The antigenic cartography toolkit was in part supported by NIAID-NIH Centers of Excellence for Influenza Research and Surveillance contracts HHSN266200700010C and HHSN272201400008C for use on influenza virus. L.C.K. was supported by the Gates Cambridge Scholarship and the NIH Oxford Cambridge Scholars Program. J.M.F. was supported by an MRC Fellowship (MR/K021885/1) and a Junior Research Fellowship from Homerton College Cambridge. E.C.H. was supported by an NHMRC Australia Fellowship. N.V. and R.B.T were supported by NIH contract HHSN272201000040I/HHSN27200004/D04.This is the author accepted manuscript. The final version is available from AAAS via http://dx.doi.org/10.1126/science.aac501

    Clinical and Virological Features of Dengue in Vietnamese Infants

    Get PDF
    Dengue is a major public health problem in tropical and subtropical countries, including Vietnam. Dengue cases occur in children and young adults; however, severe dengue also occurs in infants less than 1 year of age. Prompt recognition of dengue is important for appropriate case management, particularly in infants in whom febrile illness from other causes is common. We describe the clinical picture, virological and immunological characteristics of infants with dengue admitted to three hospitals in southern Vietnam, compared with infants admitted with fever not due to dengue. We show that infants with dengue are difficult to distinguish from those with other febrile illnesses based on signs and symptoms at presentation, and so laboratory tests to confirm dengue virus infection may be useful for diagnosis and management. Conventional diagnostic methods for dengue have low sensitivity early in infection, and we show that an alternative antigen-detection assay that has demonstrated good sensitivity and specificity in older age groups also performs well in infants. This study will help to inform the diagnosis and management of dengue in infants
    corecore