77 research outputs found

    Implantation of Autologous Bone-Marrow-Derived Cells Reconstructs Functional Urethral Sphincters in Rabbits

    Get PDF
    The purpose of this study was to determine if implantation of autologous bone-marrow-derived cells has the potential to treat stress urinary incontinence caused by intrinsic sphincter deficiency. Bone marrow cells harvested from femurs of New Zealand White rabbits were cultured for 10 days. Seven days before implantation, the urethral sphincters located at the internal urethral orifice were cryo-injured by spraying liquid nitrogen for 15 s. The cultured autologous bone-marrow-derived cells were implanted 7 days after cryo-injury. For controls, cell-free solutions were injected. At 7 and 14 days after implantation, leak point pressures were determined and the urethral sphincters were examined by immunohistochemistry. At 7 and 14 days, the cell-implanted regions contained numerous striated and smooth muscle-like cells expressing myoglobin and smooth muscle actin, respectively. The proportions of myoglobin- and smooth muscle actin-expressing areas in both the 7- and 14-day cell-implanted regions were significantly higher than in controls. By 14 days, these differentiated cells formed contacts with similar cells, creating layered muscle structures. At that time, the leak point pressure of the cell-implanted rabbits was significantly higher than that of the controls. In conclusion, autologous bone-marrow-derived cells can reconstruct functional urethral sphincters.ArticleTISSUE ENGINEERING PART A. 17(41098):1069-1081 (2011)journal articl

    Structure of the hDmc1-ssDNA filament reveals the principles of its architecture

    Get PDF
    In eukaryotes, meiotic recombination is a major source of genetic diversity, but its defects in humans lead to abnormalities such as Down's, Klinefelter's and other syndromes. Human Dmc1 (hDmc1), a RecA/Rad51 homologue, is a recombinase that plays a crucial role in faithful chromosome segregation during meiosis. The initial step of homologous recombination occurs when hDmc1 forms a filament on single-stranded (ss) DNA. However the structure of this presynaptic complex filament for hDmc1 remains unknown. To compare hDmc1-ssDNA complexes to those known for the RecA/Rad51 family we have obtained electron microscopy (EM) structures of hDmc1-ssDNA nucleoprotein filaments using single particle approach. The EM maps were analysed by docking crystal structures of Dmc1, Rad51, RadA, RecA and DNA. To fully characterise hDmc1-DNA complexes we have analysed their organisation in the presence of Ca2+, Mg2+, ATP, AMP-PNP, ssDNA and dsDNA. The 3D EM structures of the hDmc1-ssDNA filaments allowed us to elucidate the principles of their internal architecture. Similar to the RecA/Rad51 family, hDmc1 forms helical filaments on ssDNA in two states: extended (active) and compressed (inactive). However, in contrast to the RecA/Rad51 family, and the recently reported structure of hDmc1-double stranded (ds) DNA nucleoprotein filaments, the extended (active) state of the hDmc1 filament formed on ssDNA has nine protomers per helical turn, instead of the conventional six, resulting in one protomer covering two nucleotides instead of three. The control reconstruction of the hDmc1-dsDNA filament revealed 6.4 protein subunits per helical turn indicating that the filament organisation varies depending on the DNA templates. Our structural analysis has also revealed that the N-terminal domain of hDmc1 accomplishes its important role in complex formation through domain swapping between adjacent protomers, thus providing a mechanistic basis for coordinated action of hDmc1 protomers during meiotic recombination

    Structural and functional analyses of the DMC1-M200V polymorphism found in the human population

    Get PDF
    The M200V polymorphism of the human DMC1 protein, which is an essential, meiosis-specific DNA recombinase, was found in an infertile patient, raising the question of whether this homozygous human DMC1-M200V polymorphism may cause infertility by affecting the function of the human DMC1 protein. In the present study, we determined the crystal structure of the human DMC1-M200V variant in the octameric-ring form. Biochemical analyses revealed that the human DMC1-M200V variant had reduced stability, and was moderately defective in catalyzing in vitro recombination reactions. The corresponding M194V mutation introduced in the Schizosaccharomyces pombe dmc1 gene caused a significant decrease in the meiotic homologous recombination frequency. Together, these structural, biochemical and genetic results provide extensive evidence that the human DMC1-M200V mutation impairs its function, supporting the previous interpretation that this single-nucleotide polymorphism is a source of human infertility

    Measurement of a small atmospheric νμ/νe\nu_\mu/\nu_e ratio

    Full text link
    From an exposure of 25.5~kiloton-years of the Super-Kamiokande detector, 900 muon-like and 983 electron-like single-ring atmospheric neutrino interactions were detected with momentum pe>100p_e > 100 MeV/cc, pμ>200p_\mu > 200 MeV/cc, and with visible energy less than 1.33 GeV. Using a detailed Monte Carlo simulation, the ratio (μ/e)DATA/(μ/e)MC(\mu/e)_{DATA}/(\mu/e)_{MC} was measured to be 0.61±0.03(stat.)±0.05(sys.)0.61 \pm 0.03(stat.) \pm 0.05(sys.), consistent with previous results from the Kamiokande, IMB and Soudan-2 experiments, and smaller than expected from theoretical models of atmospheric neutrino production.Comment: 14 pages with 5 figure

    Biochemical analysis of the N-terminal domain of human RAD54B

    Get PDF
    The human RAD54B protein is a paralog of the RAD54 protein, which plays important roles in homologous recombination. RAD54B contains an N-terminal region outside the SWI2/SNF2 domain that shares less conservation with the corresponding region in RAD54. The biochemical roles of this region of RAD54B are not known, although the corresponding region in RAD54 is known to physically interact with RAD51. In the present study, we have biochemically characterized an N-terminal fragment of RAD54B, consisting of amino acid residues 26–225 (RAD54B26–225). This fragment formed a stable dimer in solution and bound to branched DNA structures. RAD54B26–225 also interacted with DMC1 in both the presence and absence of DNA. Ten DMC1 segments spanning the entire region of the DMC1 sequence were prepared, and two segments, containing amino acid residues 153–214 and 296–340, were found to directly bind to the N-terminal domain of RAD54B. A structural alignment of DMC1 with the Methanococcus voltae RadA protein, a homolog of DMC1 in the helical filament form, indicated that these RAD54B-binding sites are located near the ATP-binding site at the monomer–monomer interface in the DMC1 helical filament. Thus, RAD54B binding may affect the quaternary structure of DMC1. These observations suggest that the N-terminal domain of RAD54B plays multiple roles of in homologous recombination

    Coexistence of a colon carcinoma with two distinct renal cell carcinomas: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>We present the case of a patient with two tumors in his left kidney and a synchronous colon cancer. While coexisting tumors have been previously described in the same kidney or the kidney and other organs, or the colon and other organs, to the best of our knowledge no such concurrency of three primary tumors has been reported in the literature to date.</p> <p>Case presentation</p> <p>A 72-year-old man of Greek nationality presenting with pain in the right hypochondrium underwent a series of examinations that revealed gallstones, a tumor in the hepatic flexure of the colon and an additional tumor in the upper pole of the left kidney. He was subjected to a right hemicolectomy, left nephrectomy and cholecystectomy, and his postoperative course was uneventful. Histopathology examinations showed a mucinous colon adenocarcinoma, plus two tumors in the left kidney, a papillary renal cell carcinoma and a chromophobe renal cell carcinoma.</p> <p>Conclusion</p> <p>This case underlines the need to routinely scan patients pre-operatively in order to exclude coexisting tumors, especially asymptomatic renal tumors in patients with colorectal cancer, and additionally to screen concurrent tumors genetically in order to detect putative common genetic alterations.</p
    corecore