527 research outputs found

    Low regularity solutions of two fifth-order KdV type equations

    Full text link
    The Kawahara and modified Kawahara equations are fifth-order KdV type equations and have been derived to model many physical phenomena such as gravity-capillary waves and magneto-sound propagation in plasmas. This paper establishes the local well-posedness of the initial-value problem for Kawahara equation in Hs(R)H^s({\mathbf R}) with s>74s>-\frac74 and the local well-posedness for the modified Kawahara equation in Hs(R)H^s({\mathbf R}) with s14s\ge-\frac14. To prove these results, we derive a fundamental estimate on dyadic blocks for the Kawahara equation through the [k;Z][k; Z] multiplier norm method of Tao \cite{Tao2001} and use this to obtain new bilinear and trilinear estimates in suitable Bourgain spaces.Comment: 17page

    Analycity and smoothing effect for the coupled system of equations of Korteweg - de Vries type with a single point singularity

    Full text link
    We study that a solution of the initial value problem associated for the coupled system of equations of Korteweg - de Vries type which appears as a model to describe the strong interaction of weakly nonlinear long waves, has analyticity in time and smoothing effect up to real analyticity if the initial data only has a single point singularity at $x=0.

    Boundary regularity for the Poisson equation in reifenberg-flat domains

    Full text link
    This paper is devoted to the investigation of the boundary regularity for the Poisson equation {{cc} -\Delta u = f & \text{in} \Omega u= 0 & \text{on} \partial \Omega where ff belongs to some Lp(Ω)L^p(\Omega) and Ω\Omega is a Reifenberg-flat domain of Rn.\mathbb R^n. More precisely, we prove that given an exponent α(0,1)\alpha\in (0,1), there exists an ε>0\varepsilon>0 such that the solution uu to the previous system is locally H\"older continuous provided that Ω\Omega is (ε,r0)(\varepsilon,r_0)-Reifenberg-flat. The proof is based on Alt-Caffarelli-Friedman's monotonicity formula and Morrey-Campanato theorem

    An alternative approach to regularity for the Navier-Stokes equations in critical spaces

    Get PDF
    In this paper we present an alternative viewpoint on recent studies of regularity of solutions to the Navier-Stokes equations in critical spaces. In particular, we prove that mild solutions which remain bounded in the space H˙1/2\dot H^{1/2} do not become singular in finite time, a result which was proved in a more general setting by L. Escauriaza, G. Seregin and V. Sverak using a different approach. We use the method of "concentration-compactness" + "rigidity theorem" which was recently developed by C. Kenig and F. Merle to treat critical dispersive equations. To the authors' knowledge, this is the first instance in which this method has been applied to a parabolic equation. We remark that we have restricted our attention to a special case due only to a technical restriction, and plan to return to the general case (the L3L^3 setting) in a future publication.Comment: 41 page

    Homoclinic orbits and chaos in a pair of parametrically-driven coupled nonlinear resonators

    Full text link
    We study the dynamics of a pair of parametrically-driven coupled nonlinear mechanical resonators of the kind that is typically encountered in applications involving microelectromechanical and nanoelectromechanical systems (MEMS & NEMS). We take advantage of the weak damping that characterizes these systems to perform a multiple-scales analysis and obtain amplitude equations, describing the slow dynamics of the system. This picture allows us to expose the existence of homoclinic orbits in the dynamics of the integrable part of the slow equations of motion. Using a version of the high-dimensional Melnikov approach, developed by Kovacic and Wiggins [Physica D, 57, 185 (1992)], we are able to obtain explicit parameter values for which these orbits persist in the full system, consisting of both Hamiltonian and non-Hamiltonian perturbations, to form so-called Shilnikov orbits, indicating a loss of integrability and the existence of chaos. Our analytical calculations of Shilnikov orbits are confirmed numerically

    A para-differential renormalization technique for nonlinear dispersive equations

    Full text link
    For \alpha \in (1,2) we prove that the initial-value problem \partial_t u+D^\alpha\partial_x u+\partial_x(u^2/2)=0 on \mathbb{R}_x\times\mathbb{R}_t; u(0)=\phi, is globally well-posed in the space of real-valued L^2-functions. We use a frequency dependent renormalization method to control the strong low-high frequency interactions.Comment: 42 pages, no figure
    corecore