241 research outputs found

    Climate projections over the Great Lakes Region: using two-way coupling of a regional climate model with a 3-D lake model

    Get PDF
    Warming trends in the Laurentian Great Lakes and surrounding areas have been observed in recent decades, and concerns continue to rise about the pace and pattern of future climate change over the world\u27s largest freshwater system. To date, most regional climate models used for Great Lakes projections either neglected the lake-atmosphere interactions or are only coupled with a 1-D column lake model to represent the lake hydrodynamics. This study presents a Great Lakes climate change projection that has employed the two-way coupling of a regional climate model with a 3-D lake model (GLARM) to resolve 3-D hydrodynamics essential for large lakes. Using the three carefully selected Coupled Model Intercomparison Project Phase 5 (CMIP5) general circulation models (GCMs), we show that the GLARM ensemble average substantially reduces surface air temperature and precipitation biases of the driving GCM ensemble average in present-day climate simulations. The improvements are not only displayed from an atmospheric perspective but are also evident in the accurate simulations of lake temperature and ice coverage. We further present the GLARM projected climate change for the mid-21st century (2030-2049) and the late 21st century (2080-2099) in the Representative Concentration Pathway (RCP) 4.5 and RCP 8.5 scenarios. Under RCP 8.5, the Great Lakes basin is projected to warm by 1.3-2.1 C by the mid-21st century and 4.1-5.0 C by the end of the century relative to the early century (2000-2019). Moderate mitigation (RCP 4.5) reduces the mid-century warming to 0.8-1.8 C and late-century warming to 1.8-2.7 C. Annual precipitation in GLARM is projected to increase for the entire basin, varying from 0 % to 13 % during the mid-century and from 9 % to 32 % during the late century in different scenarios and simulations. The most significant increases are projected in spring and fall when current precipitation is highest and a minimal increase in winter when it is lowest. Lake surface temperatures (LSTs) are also projected to increase across the five lakes in all of the simulations, but with strong seasonal and spatial variability. The most significant LST increases occur in Lakes Superior and Ontario. The strongest warming is projected in spring that persists into the summer, resulting from earlier and more intense stratification in the future. In addition, diminishing winter stratification in the future suggests the transition from dimictic lakes to monomictic lakes by the end of the century. In contrast, a relatively smaller increase in LSTs during fall and winter is projected with heat transfer to the deep water due to the strong mixing and energy required for ice melting. Correspondingly, the highest monthly mean ice cover is projected to reduce to 3 %-15 % and 10 %-40 % across the lakes by the end of the century in RCP 8.5 and RCP 4.5, respectively. In the coastal regions, ice duration is projected to decrease by up to 60 d

    Climate projections over the Great Lakes Region: using two-way coupling of a regional climate model with a 3-D lake model

    Get PDF
    Warming trends in the Laurentian Great Lakes and surrounding areas have been observed in recent decades, and concerns continue to rise about the pace and pattern of future climate change over the world\u27s largest freshwater system. To date, most regional climate models used for Great Lakes projections either neglected the lake-atmosphere interactions or are only coupled with a 1-D column lake model to represent the lake hydrodynamics. This study presents a Great Lakes climate change projection that has employed the two-way coupling of a regional climate model with a 3-D lake model (GLARM) to resolve 3-D hydrodynamics essential for large lakes. Using the three carefully selected Coupled Model Intercomparison Project Phase 5 (CMIP5) general circulation models (GCMs), we show that the GLARM ensemble average substantially reduces surface air temperature and precipitation biases of the driving GCM ensemble average in present-day climate simulations. The improvements are not only displayed from an atmospheric perspective but are also evident in the accurate simulations of lake temperature and ice coverage. We further present the GLARM projected climate change for the mid-21st century (2030–2049) and the late 21st century (2080–2099) in the Representative Concentration Pathway (RCP) 4.5 and RCP 8.5 scenarios. Under RCP 8.5, the Great Lakes basin is projected to warm by 1.3–2.1 ∘C by the mid-21st century and 4.1–5.0 ∘C by the end of the century relative to the early century (2000–2019). Moderate mitigation (RCP 4.5) reduces the mid-century warming to 0.8–1.8 ∘C and late-century warming to 1.8–2.7 ∘C. Annual precipitation in GLARM is projected to increase for the entire basin, varying from 0 % to 13 % during the mid-century and from 9 % to 32 % during the late century in different scenarios and simulations. The most significant increases are projected in spring and fall when current precipitation is highest and a minimal increase in winter when it is lowest. Lake surface temperatures (LSTs) are also projected to increase across the five lakes in all of the simulations, but with strong seasonal and spatial variability. The most significant LST increases occur in Lakes Superior and Ontario. The strongest warming is projected in spring that persists into the summer, resulting from earlier and more intense stratification in the future. In addition, diminishing winter stratification in the future suggests the transition from dimictic lakes to monomictic lakes by the end of the century. In contrast, a relatively smaller increase in LSTs during fall and winter is projected with heat transfer to the deep water due to the strong mixing and energy required for ice melting. Correspondingly, the highest monthly mean ice cover is projected to reduce to 3 %–15 % and 10 %–40 % across the lakes by the end of the century in RCP 8.5 and RCP 4.5, respectively. In the coastal regions, ice duration is projected to decrease by up to 60 d

    MANTRA: Improving Knowledge of Maternal Health, Neonatal Health, and Geohazards in Women in Rural Nepal Using a Mobile Serious Game

    Get PDF
    Serious games, conveying educational knowledge rather than merely entertainment, are a rapidly expanding research domain for cutting-edge educational technology. Digital interventions like serious games are great opportunities to overcome challenges in low-and-middle-income countries that limit access to health information, such as social barriers like low-literacy and gender. MANTRA: Increasing maternal and child health resilience before, during and after disasters using mobile technology in Nepal takes on these challenges with a novel digital health intervention; a serious mobile game aimed at vulnerable low-literacy female audiences in rural Nepal. The serious game teaches 28 learning objectives of danger signs in geohazards, maternal, and neonatal health to improve knowledge and self-assessment of common conditions and risks to inform healthcare-seeking behavior. Evaluations consisted of recruiting 35 end users to participate in a pre-test assessment, playing the game, post-test assessment, and focus groups to elicit qualitative feedback. Assessments analyzed knowledge gain in two ways; by learning objective with McNemar tests for each learning objective, and by participant scores with paired t-tests of overall scores and by module. Results of assessments of knowledge gain by learning objective (McNemar tests) indicate participants had sufficient prior knowledge to correctly interpret and respond to 26% of pictograms (coded AA), which is a desirable result although without the possibility of improvement through the intervention. The geohazard module had greatest impact as 16% of responses showed knowledge gain (coded BA). The two most successful learning objectives showing statistically significant positive change were evidence of rockfalls and small cracks in the ground (p = < 0.05). Assessment of knowledge gain by participant scores (paired t-tests) showed the 35 participants averaged a 7.7 point improvement (p < 0.001) in the assessment (28 learning objectives). Average change in knowledge of subdivided module scores (each module normalized to 100 points for comparison) was greatest in the geohazard module (9.5 points, p < 0.001), then maternal health (7.4 points, p = 0.0067), and neonatal health (6.0 points, p = 0.013). This evaluation demonstrated that carefully designed digital health interventions with pictograms co-authored by experts and users can teach complex health and geohazard situations. Significant knowledge gain was demonstrated for several learning objectives while those with non-significant or negative change will be re-designed to effectively convey information

    Processes at the margins of supraglacial debris cover:Quantifying dirty ice ablation and debris redistribution

    Get PDF
    Current glacier ablation models have difficulty simulating the high‐melt transition zone between clean and debris‐covered ice. In this zone, thin debris cover is thought to increase ablation compared to clean ice, but often this cover is patchy rather than continuous. There is a need to understand ablation and debris dynamics in this transition zone to improve the accuracy of ablation models and the predictions of future debris cover extent. To quantify the ablation of partially debris‐covered ice (or ‘dirty ice’), a high‐resolution, spatially‐continuous ablation map was created from repeat unmanned aerial systems (UAS) surveys, corrected for glacier flow in a novel way using on‐glacier ablation stakes. Surprisingly, ablation is similar (range ~5 mm w.e. per day) across a wide range of percentage debris covers (~30‐80%) due to the opposing effects of a positive correlation between percentage debris cover and clast size, countered by a negative correlation with albedo. Once debris cover becomes continuous, ablation is significantly reduced (by 61.6% compared to a partial debris cover), and there is some evidence that the cleanest ice (<~15% debris cover) has a lower ablation than dirty ice (by 3.7%). High‐resolution feature tracking of clast movement revealed a strong modal clast velocity where debris was continuous, indicating that debris moves by creep down moraine slopes, in turn promoting debris cover growth at the slope toe. However, not all slope margins gain debris due to the removal of clasts by supraglacial streams. Clast velocities in the dirty ice area were twice as fast than clasts within the continuously debris‐covered area, as clasts moved by sliding off their boulder tables. These new quantitative insights into the interplay between debris cover characteristics and ablation can be used to improve the treatment of dirty ice in ablation models, in turn improving estimates of glacial meltwater production

    Debris cover and surface melt at a temperate maritime alpine glacier: Franz Josef Glacier, New Zealand

    Get PDF
    Melt rates on glaciers are strongly influenced by the presence of supraglacial debris, which can either enhance or reduce ablation relative to bare ice. Most recently, Franz Josef Glacier has entered into a phase of strong retreat and downwasting, with the increasing emergence of debris on the surface in the ablation zone. Previously at Franz Josef Glacier, melt has only been measured on bare ice. During February 2012, a network of 11 ablation stakes was drilled into locations of varying supraglacial debris thickness on the lower glacier. Mean ablation rates over 9 days varied over the range 1.2–10.1 cm d−1, and were closely related to debris thickness. Concomitant observations of air temperature allowed the application of a degree-day approach to the calculation of melt rates, with air temperature providing a strong indicator of melt. Degree-day factors (d f) varied over the range 1.1–8.1 mm d−1 °C−1 (mean of 4.4 mm d−1 °C−1), comparable with rates reported in other studies. Mapping of the current debris cover revealed 0.7 km2 of the 4.9 km2 ablation zone surface was debris-covered, with thicknesses ranging 1–50 cm. Based on measured debris thicknesses and d f, ablation on debris-covered areas of the glacier is reduced by a total of 41% which equates to a 6% reduction in melt overall across the entire ablation zone. This study highlights the usefulness of a short-term survey to gather representative ablation data, consistent with numerous overseas ablation studies on debris-covered glaciers

    Patan hospital experience in treating philadelphia chromosome/BCR-ABL1 positive chronic myeloid leukemia patients with gleevec (imatinib mesylate); the first generation specific tyrosine kinase inhibitor

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic Myeloid Leukemia (CML) is caused by the abnormal fusion protein BCR-ABL1, a constitutively active tyrosine kinase and product of the Philadelphia chromosome. Gleevec (Imatinib mesylate) is a selective inhibitor of this kinase. Treatment with this agent is known to result in hematologic, cytogenetic, and molecular responses. Patan hospital (Patan, Nepal) is one of the Gleevec International Patient Assistance Program (GIPAP) centers for patients with CML.</p> <p>Methods</p> <p>A total of 106 Philadelphia positive CML patients were enrolled in our center between Feb 2003 and Jun 2008, and 103 of them were eligible for cytogenetic and/or hematologic response analyses.</p> <p>Results</p> <p>Out of 103 patients, 27% patients underwent cytogenetic analysis. Imatinib induced major cytogenetic responses in 89% and complete hematologic responses in almost 100% of the patients with confirmed CML. After a mean follow up of 27 months, an estimated 90% of the patients on imatinib remained in hematologic remission and more than 90% of the patients are still alive. About 30% of patients developed some form of manageable myelosuppression. A few patients developed non-hematologic toxic side effects such as edema and hepatotoxicity.</p> <p>Conclusions</p> <p>Our study demonstrates that imatinib is safe to use in a developing country. Furthermore, we demonstrate that imatinib is very effective and induced long lasting responses in a high proportion of patients with Ph chromosome/BCR-ABL1 positive CML. Imatinib is well tolerated by our patients. The lack of cytogenetic analysis in the majority of our patients hindered our ability to detect inadequate responses to imatinib and adjust therapy appropriately.</p

    Local probing of the field emission stability of vertically aligned multiwalled carbon nanotubes

    Full text link
    Metallic cantilever in high vacuum atomic force microscope has been used as anode for field emission experiments from densely packed vertically aligned multi-walled carbon nanotubes. The high spatial resolution provided by the scanning probe technique allowed precise setting of the tip-sample distance in the submicron region. The dimension of the probe (curvature radius below 50nm) allowed to measure current contribution from sample areas smaller than 1um^2. The study of long-term stability evidenced that on these small areas the field emission current remains stable (within 10% fluctuations) several hours (at least up to 72 hours) at current intensities between 10-5A and 10-8A. Improvement of the current stability has been observed after performing long-time Joule heating conditioning to completely remove possible adsorbates on the nanotubes.Comment: 15 pages, 7 figure

    Individualised, short-course antibiotic treatment versus usual long-course treatment for ventilator-associated pneumonia (REGARD-VAP): a multicentre, individually randomised, open-label, non-inferiority trial

    Get PDF
    Background: Ventilator-associated pneumonia (VAP) is associated with increased mortality, prolonged hospitalisation, excessive antibiotic use and, consequently, increased antimicrobial resistance. In this phase 4, randomised trial, we aimed to establish whether a pragmatic, individualised, short-course antibiotic treatment strategy for VAP was non-inferior to usual care. Methods: We did an individually randomised, open-label, hierarchical non-inferiority–superiority trial in 39 intensive care units in six hospitals in Nepal, Singapore, and Thailand. We enrolled adults (age ≥18 years) who met the US Centers for Disease Control and Prevention National Healthcare Safety Network criteria for VAP, had been mechanically ventilated for 48 h or longer, and were administered culture-directed antibiotics. In culture-negative cases, empirical antibiotic choices were made depending on local hospital antibiograms reported by the respective microbiology laboratories or prevailing local guidelines. Participants were assessed until fever resolution for 48 h and haemodynamic stability, then randomly assigned (1:1) to individualised short-course treatment (≤7 days and as short as 3–5 days) or usual care (≥8 days, with precise durations determined by the primary clinicians) via permuted blocks of variable sizes (8, 10, and 12), stratified by study site. Independent assessors for recurrent pneumonia and participants were masked to treatment allocation, but clinicians were not. The primary outcome was a 60-day composite endpoint of death or pneumonia recurrence. The non-inferiority margin was prespecified at 12% and had to be met by analyses based on both intention-to-treat (all study participants who were randomised) and per-protocol populations (all randomised study participants who fulfilled the eligibility criteria, met fitness criteria for antibiotic discontinuation, and who received antibiotics for the duration specified by their allocation group). This study is registered with ClinicalTrials.gov, number NCT03382548. Findings: Between May 25, 2018, and Dec 16, 2022, 461 patients were enrolled and randomly assigned to the short-course treatment group (n=232) or the usual care group (n=229). Median age was 64 years (IQR 51–74) and 181 (39%) participants were female. 460 were included in the intention-to-treat analysis after excluding one withdrawal (231 in the short-course group and 229 in the usual care group); 435 participants received the allocated treatment and fulfilled eligibility criteria, and were included in the per-protocol population. Median antibiotic treatment duration for the index episodes of VAP was 6 days (IQR 5–7) in the short-course group and 14 days (10–21) in the usual care group. 95 (41%) of 231 participants in the short-course group met the primary outcome, compared with 100 (44%) of 229 in the usual care group (risk difference –3% [one-sided 95% CI −∞ to 5%]). Results were similar in the per-protocol population. Non-inferiority of short-course antibiotic treatment was met in the analyses, although superiority compared with usual care was not established. In the per-protocol population, antibiotic side-effects occurred in 86 (38%) of 224 in the usual care group and 17 (8%) of 211 in the short-course group (risk difference –31% [95% CI –37 to –25%; p<0·0001]). Interpretation: In this study of adults with VAP, individualised shortened antibiotic duration guided by clinical response was non-inferior to longer treatment durations in terms of 60-day mortality and pneumonia recurrence, and associated with substantially reduced antibiotic use and side-effects. Individualised, short-course antibiotic treatment for VAP could help to reduce the burden of side-effects and the risk of antibiotic resistance in high-resource and resource-limited settings

    Structural and spectroscopic characterization of a HdrA-like subunit from Hyphomicrobium denitrificans

    Get PDF
    Funding Information: We thank Laurenz Heidrich for help with statistical analyses. This work was supported by grant Da 351/8‐1 (to CD) from the Deutsche Forschungsgemeinschaft and Fundação para a Ciência e Tecnologia (Portugal) (grant PTDC/BIA‐BQM/29118 and R&D units MOSTMICRO‐ITQB (UIDB/04612/2020 and UIDP/04612/2020), and European Union's Horizon 2020 research and innovation program (grant agreement No 810856). Open access funding enabled and organized by Projekt DEAL. Publisher Copyright: © 2020 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies Copyright: Copyright 2021 Elsevier B.V., All rights reserved.Many bacteria and archaea employ a novel pathway of sulfur oxidation involving an enzyme complex that is related to the heterodisulfide reductase (Hdr or HdrABC) of methanogens. As a first step in the biochemical characterization of Hdr-like proteins from sulfur oxidizers (sHdr), we structurally analyzed the recombinant sHdrA protein from the Alphaproteobacterium Hyphomicrobium denitrificans at 1.4 Å resolution. The sHdrA core structure is similar to that of methanogenic HdrA (mHdrA) which binds the electron-bifurcating flavin adenine dinucleotide (FAD), the heart of the HdrABC-[NiFe]-hydrogenase catalyzed reaction. Each sHdrA homodimer carries two FADs and two [4Fe–4S] clusters being linked by electron conductivity. Redox titrations monitored by electron paramagnetic resonance and visible spectroscopy revealed a redox potential between −203 and −188 mV for the [4Fe–4S] center. The potentials for the FADH•/FADH− and FAD/FADH• pairs reside between −174 and −156 mV and between −81 and −19 mV, respectively. The resulting stable semiquinone FADH• species already detectable in the visible and electron paramagnetic resonance spectra of the as-isolated state of sHdrA is incompatible with basic principles of flavin-based electron bifurcation such that the sHdr complex does not apply this new mode of energy coupling. The inverted one-electron FAD redox potentials of sHdr and mHdr are clearly reflected in the different FAD-polypeptide interactions. According to this finding and the assumption that the sHdr complex forms an asymmetric HdrAA′B1C1B2C2 hexamer, we tentatively propose a mechanism that links protein-bound sulfane oxidation to sulfite on HdrB1 with NAD+ reduction via lipoamide disulfide reduction on HdrB2. The FAD of HdrA thereby serves as an electron storage unit. Database: Structural data are available in PDB database under the accession number 6TJR.publishe

    Clinical profile and outcome of neonates admitted to the Neonatal Care Unit in a rural teaching Hospital

    Get PDF
    Objectives: Neonatal morbidity and mortality rates reflect efficiency of health services of a country. This study was conducted to identify the clinical profile, pattern of diseases and common causes of mortality and morbidity in neonates admitted to neonatology unit. Methods: The study was conducted in Neonatal Unit of Karnali Academy of Health Sciences, Jumla for a period of one year from 1st May 2017 to 30th April 2018. Data of all admitted patients were reviewed and analyzed in terms of gender, gestational age, age at presentation, weight, cause of admission and their outcome. Diagnosis was made on clinical examination, radiological findings and laboratory investigations. Data were analyzed using SPSS version 20. Results: Out of 153 neonates admitted during the study period, 2 were excluded because of deficient record. Full-term neonates were 122(80.7%) while preterm were 29 (19.3%). Low birth weight (LBW) babies were 32 (21.18%).Neonatal sepsis 91 (60.26%) was the most common cause of hospital admissions followed by meconium aspiration syndrome 21(13.9%) and prematurity 10(6.62%). Out of 151 newborns, 112 babies (74.1%) were discharged after improvement, 15(9.93%) left against medical advice, 13(8.6%) babies were referred to higher centers for intensive care and there were 9 (5.9%) mortalities and 2(1.3%) got absconded. Conclusion: The majority of neonatal morbidity is due to sepsis, prematurity and respiratory causes. All these causes are preventable to some extent and, can be effectively treated in order to reduce morbidity and mortality. Keywords: New Born, Mortality, Admission, Sepsi
    corecore