448 research outputs found

    Spectral noncommutative geometry and quantization: a simple example

    Get PDF
    We explore the relation between noncommutative geometry, in the spectral triple formulation, and quantum mechanics. To this aim, we consider a dynamical theory of a noncommutative geometry defined by a spectral triple, and study its quantization. In particular, we consider a simple model based on a finite dimensional spectral triple (A, H, D), which mimics certain aspects of the spectral formulation of general relativity. We find the physical phase space, which is the space of the onshell Dirac operators compatible with A and H. We define a natural symplectic structure over this phase space and construct the corresponding quantum theory using a covariant canonical quantization approach. We show that the Connes distance between certain two states over the algebra A (two ``spacetime points''), which is an arbitrary positive number in the classical noncommutative geometry, turns out to be discrete in the quantum theory, and we compute its spectrum. The quantum states of the noncommutative geometry form a Hilbert space K. D is promoted to an operator *D on the direct product *H of H and K. The triple (A, *H, *D) can be viewed as the quantization of the family of the triples (A, H, D).Comment: 7 pages, no figure

    Angular Distribution of Photoelectrons in Three Photon Ionisation of Sodium

    Get PDF
    Druckfehler auf Seite 54

    A Class of Bicovariant Differential Calculi on Hopf Algebras

    Full text link
    We introduce a large class of bicovariant differential calculi on any quantum group AA, associated to AdAd-invariant elements. For example, the deformed trace element on SLq(2)SL_q(2) recovers Woronowicz' 4D±4D_\pm calculus. More generally, we obtain a sequence of differential calculi on each quantum group A(R)A(R), based on the theory of the corresponding braided groups B(R)B(R). Here RR is any regular solution of the QYBE.Comment: 16 page

    Carnot-Caratheodory metric and gauge fluctuation in Noncommutative Geometry

    Full text link
    Gauge fields have a natural metric interpretation in terms of horizontal distance. The latest, also called Carnot-Caratheodory or subriemannian distance, is by definition the length of the shortest horizontal path between points, that is to say the shortest path whose tangent vector is everywhere horizontal with respect to the gauge connection. In noncommutative geometry all the metric information is encoded within the Dirac operator D. In the classical case, i.e. commutative, Connes's distance formula allows to extract from D the geodesic distance on a riemannian spin manifold. In the case of a gauge theory with a gauge field A, the geometry of the associated U(n)-vector bundle is described by the covariant Dirac operator D+A. What is the distance encoded within this operator ? It was expected that the noncommutative geometry distance d defined by a covariant Dirac operator was intimately linked to the Carnot-Caratheodory distance dh defined by A. In this paper we precise this link, showing that the equality of d and dh strongly depends on the holonomy of the connection. Quite interestingly we exhibit an elementary example, based on a 2 torus, in which the noncommutative distance has a very simple expression and simultaneously avoids the main drawbacks of the riemannian metric (no discontinuity of the derivative of the distance function at the cut-locus) and of the subriemannian one (memory of the structure of the fiber).Comment: published version with additional figures to make the proof more readable. Typos corrected in this ultimate versio

    Quantum electrodynamics of relativistic bound states with cutoffs

    Full text link
    We consider an Hamiltonian with ultraviolet and infrared cutoffs, describing the interaction of relativistic electrons and positrons in the Coulomb potential with photons in Coulomb gauge. The interaction includes both interaction of the current density with transversal photons and the Coulomb interaction of charge density with itself. We prove that the Hamiltonian is self-adjoint and has a ground state for sufficiently small coupling constants.Comment: To appear in "Journal of Hyperbolic Differential Equation

    General Relativity in terms of Dirac Eigenvalues

    Get PDF
    The eigenvalues of the Dirac operator on a curved spacetime are diffeomorphism-invariant functions of the geometry. They form an infinite set of ``observables'' for general relativity. Recent work of Chamseddine and Connes suggests that they can be taken as variables for an invariant description of the gravitational field's dynamics. We compute the Poisson brackets of these eigenvalues and find them in terms of the energy-momentum of the eigenspinors and the propagator of the linearized Einstein equations. We show that the eigenspinors' energy-momentum is the Jacobian matrix of the change of coordinates from metric to eigenvalues. We also consider a minor modification of the spectral action, which eliminates the disturbing huge cosmological term and derive its equations of motion. These are satisfied if the energy momentum of the trans Planckian eigenspinors scale linearly with the eigenvalue; we argue that this requirement approximates the Einstein equations.Comment: 6 pages, RevTe

    Quantum Principal Bundles and Corresponding Gauge Theories

    Full text link
    A generalization of classical gauge theory is presented, in the framework of a noncommutative-geometric formalism of quantum principal bundles over smooth manifolds. Quantum counterparts of classical gauge bundles, and classical gauge transformations, are introduced and investigated. A natural differential calculus on quantum gauge bundles is constructed and analyzed. Kinematical and dynamical properties of corresponding gauge theories are discussed.Comment: 28 pages, AMS-LaTe

    Spectral triples and the super-Virasoro algebra

    Get PDF
    We construct infinite dimensional spectral triples associated with representations of the super-Virasoro algebra. In particular the irreducible, unitary positive energy representation of the Ramond algebra with central charge c and minimal lowest weight h=c/24 is graded and gives rise to a net of even theta-summable spectral triples with non-zero Fredholm index. The irreducible unitary positive energy representations of the Neveu-Schwarz algebra give rise to nets of even theta-summable generalised spectral triples where there is no Dirac operator but only a superderivation.Comment: 27 pages; v2: a comment concerning the difficulty in defining cyclic cocycles in the NS case have been adde

    A Universal Action Formula

    Get PDF
    A universal formula for an action associated with a noncommutative geometry, defined by a spectal triple (\Ac ,\Hc ,D), is proposed. It is based on the spectrum of the Dirac operator and is a geometric invariant. The new symmetry principle is the automorphism of the algebra \Ac which combines both diffeomorphisms and internal symmetries. Applying this to the geometry defined by the spectrum of the standard model gives an action that unifies gravity with the standard model at a very high energy scale.Comment: This is a short non technical letter based on the longer version, hep-th/9606001. Tex file, 10 page

    A survey of spectral models of gravity coupled to matter

    Full text link
    This is a survey of the historical development of the Spectral Standard Model and beyond, starting with the ground breaking paper of Alain Connes in 1988 where he observed that there is a link between Higgs fields and finite noncommutative spaces. We present the important contributions that helped in the search and identification of the noncommutative space that characterizes the fine structure of space-time. The nature and properties of the noncommutative space are arrived at by independent routes and show the uniqueness of the Spectral Standard Model at low energies and the Pati-Salam unification model at high energies.Comment: An appendix is added to include scalar potential analysis for a Pati-Salam model. 58 Page
    • …
    corecore