145 research outputs found

    Design of a slurry loop for cuttings transport studies in hard rock drilling applications

    Get PDF
    Transportation of the fluid and slurry (fluid and solid particles mixture) in the pipe and annulus space has been the focus of numerous studies. There are different parameters to be considered when studying slurry transportation. These include slurry velocity or flow rates; fluid properties such as density and rheology; and solid particles properties including concentration, density, shape and size. Also the angle of the flow conduit, rotation of the pipe and possible eccentricity of the annulus are other factors which influence slurry transport characteristics. Although a number of analytical, numerical and empirical equations as well as numerical simulations have been developed for studying the flow and slurry transport, the results need to be validated against either field or lab data. As performing field tests is costly and time consuming conducting simulations at laboratory scale appears as a good alternative. Different flow loops have been designed to study the slurry transport in different science and engineering disciplines including oil and gas and mining. However, few of these consider in particular cuttings transportation in small size annulus space. The flow characteristics appear to be very different when it travels within a small size annulus, in particular when the fluid velocity is high. In this study, a review of some of the existing slurry flow loops will be conducted. Then the details of a slurry loop which has been designed and commissioned for the purpose of studying cuttings transport in a small size annulus space for applications in drilling mineral exploration wells using coil tube technology will be presented

    Treatment of wastewater using response surface methodology: a brief review

    Get PDF
    Response surface methodology (RSM) is widely applied to gathering knowledge on the interactions among parameters that require optimization during the treatment of wastewater. It can be used to optimize parameters during the process of treating wastewater, e.g., landfill leachate. The experimental design methods are useful to evaluate the parameters involved in a treatment with the minimum number of experiments. This will reduce the need for reagents and materials for experiments, which finally causes both time and expense to be increased. Anaerobic digestion of wastewater technologies escalated depending on the design configuration of the reactor. Several important parameters are taken into consideration in designing an anaerobic reactor such as operating conditions, seed sludge, wastewater composition and mixing. To construct a highly efficient degradation system, it is necessary to optimize such effective parameters. As a result, the advanced statistical design is used for process characterization, optimization and modelling. In this paper, the fundamentals of RSM and its application in the anaerobic treatment of wastewater was discussed in brief. The various works done in an anaerobic reactor using RSM for prediction and optimization are given

    An in vitro Comparative study upon the Hemolytic, Thrombogenic, Coagulation parameters and Stability properties of the Hemiscorpius lepturus Venom

    Get PDF
    Hemiscorpius lepturus belonging to Hemiscorpiidae family is the most venomous of all types of scorpion existing in south west of Iran causing hemoglobinuria and dermal lesions by envenomation. We compare the hemolytic pattern upon time in different domestic animals upon time according to their different sphingomyelin contents. In addition other in vitro hematologic parameters, platelet lysis, coagulation changes and finally preservative factors (temperature, pH, protases) are discussed. The hemolytic activity was inhibited significantly by heating at 100 °C for 60 minutes (26%) and reached 38% via incubation with papain (10U/ml) while retained over a pH range of 4-11. Horses and sheep have the lower (61%) and upper (100%) rate of hemolysis. Calcium and magnesium ions could increase rate of hemolysis and EDTA solution had significantly decresing effect. The venom significantly changed in vitro coagulation factors (PT and APTT) from base line levels and had no effect on platelet lysis. It seems that our venom belongs to metalloproteinases due to potentiation effects of bivalent cations (calcium and magnesium) and ghost cell formation in our study indicatiing hemoglobin efflux

    Prediction and optimization of the Fenton process for the treatment of landfill leachate using an artificial neural network

    Get PDF
    In this study, the artificial neural network (ANN) technique was employed to derive an empirical model to predict and optimize landfill leachate treatment. The impacts of H2O2:Fe2+ ratio, Fe2+ concentration, pH and process reaction time were studied closely. The results showed that the highest and lowest predicted chemical oxygen demand (COD) removal efficiency were 78.9% and 9.3%, respectively. The overall prediction error using the developed ANN model was within -0.625%. The derived model was adequate in predicting responses (R2 = 0.9896 and prediction R2 = 0.6954). The initial pH, H2O2:Fe2+ ratio and Fe2+ concentrations had positive effects, whereas coagulation pH had no direct effect on COD removal. Optimized conditions under specified constraints were obtained at pH = 3, Fe2+ concentration = 781.25 mg/L, reaction time = 28.04 min and H2O2:Fe2+ ratio = 2. Under these optimized conditions, 100% COD removal was predicted. To confirm the accuracy of the predicted model and the reliability of the optimum combination, one additional experiment was carried out under optimum conditions. The experimental values were found to agree well with those predicted, with a mean COD removal efficiency of 97.83%

    Effect of covid-19 virus on reducing GHG emission and increasing energy generated by renewable energy sources: a brief study in Malaysian context

    Get PDF
    Coronavirus 2019 (COVID-19) has globally affected the human mortality rate and economic history of the modern world. According to the World Health Organization, COVID-19 has caused a severe threat to the health of the vulnerable groups, notably the elderly. There is still some disagreements regarding the source of the virus and its intermediate host. However, the spread of this disease has caused most countries to enforce strict curfew laws and close most industrial and recreational centres. This study aims to show the potential positive effects of COVID-19 on the environment and the increase of renewable energy generation in Malaysia. To prevent the spread of this disease, Malaysia enacted the Movement Control Order (MCO) law in March 2020. Implementation of this law led to a reduction in environmental pollution, especially air pollution, in this country. The greenhouse gases (GHG) emission , which was 8 Mt CO2 eq. from January 2020 to March 2020, reduced to <1 Mt CO2 eq. for April and May. The reduction of GHG emission and pollutant gases allowed more sunlight to reach photovoltaic panels, hence increasing the renewable energy generation

    Fouling characteristics and cleaning approach of ultrafiltration membrane during xylose reductase separation

    Get PDF
    Many operating parameters of ultrafiltration (UF) are playing a crucial role when using a polyethersulfone membrane to separate xylose reductase (XR) enzyme from reaction mixtures during xylitol synthesis. The present study focuses on the separation of XR enzyme using a cross-flow ultrafiltration (UF) membrane. The filtration process was analyzed using the three effective variables such as filtration time, cross-flow velocity (CFV), and the transmembrane pressure (TMP), which were ranging from 0 to 100 min, 0.52 to 1.2 cm/s and 1–1.6 bar, respectively. Then, using the resistance in series model, the hydraulic resistance for alkali chemical cleaning during XR separation was estimated. During separation, increased TMP showed a positive-flux effect as a driving force, however, fouling and polarized layer were more prominent under higher TMP. Increased CFV, on the other hand, was found more efficient in fouling control. In terms of the membrane cleaning techniques, an alkaline solution containing 0.1 M sodium hydroxide was shown to be the most effective substance in removing foulants from the membrane surface in this investigation. Cleaning with an alkaline solution resulted in a maximum flux recovery of 93% for xylose reductase separation. This work may serve as a useful guide to better understand the optimization parameters during XR separation and alleviating UF membrane fouling induced during XR separation
    corecore