715 research outputs found
Parasitic chytrids could promote copepod survival by mediating material transfer from inedible diatoms
Diatoms form large spring blooms in lakes and oceans, providing fuel for higher trophic levels at the start of the growing season. Some of the diatom blooms, however, are not grazed by filter-feeding zooplankton like Daphnia due to their large size. Several of these large diatoms are susceptible to chytrid infections. Zoospores of chytrids appeared to be excellent food for Daphnia, both in terms of size, shape, and quality (PUFAs and cholesterol). Thus, zoospores of chytrids can bridge the gap between inedible diatoms and Daphnia. In order to examine the effects of diatoms and chytrids on the survival of copepods, we performed one grazing and one survival experiment. The grazing experiment revealed that the diatom, Asterionella formosa, was not grazed by the copepod, Eudiaptomus gracilis, even after being infected by the chytrid Zygorhizidium planktonicum. However, carbon and nitrogen concentrations were significantly reduced by E. gracilis only when A. formosa was infected by Z. planktonicum, indicating that the chytrids might facilitate material transfer from inedible diatoms to the copepods. The survival experiment revealed that E. gracilis lived shorter with A. formosa than with the cryptophyta Cryptomonas pyrenoidifera. However, the survival of E. gracilis increased significantly in the treatment where A. formosa cells were infected by Z. planktonicum. Since E. gracilis could not graze A. formosa cells due to their large colonial forms, E. gracilis may acquire nutrients by grazing on the zoospores, and were so able to survive in the presence of the A. formosa. This provides new insights into the role of parasitic fungi in aquatic food webs, where chytrids may improve copepod survival during diatom blooms.
Derivation of CPT resonance signals from density-matrix equations with all relevant sublevels of Cs atoms and confirmation of experimental results
Coherent-population-trapping resonance is a quantum interference effect that
appears in the two-photon transitions between the ground-state hyperfine levels
of alkali atoms and is often utilized in miniature clock devices. To
quantitatively understand and predict the performance of this phenomenon, it is
necessary to consider the transitions and relaxations between all hyperfine
Zeeman sublevels involved in the different excitation processes of the atom. In
this study, we constructed a computational multi-level atomic model of the
Liouville density-matrix equation for 32 Zeeman sublevels involved in the
line of Cs irradiated by two frequencies with circularly polarized
components and then simulated the amplitude and shape of the transmitted light
through a Cs vapor cell. We show that the numerical solutions of the equation
and analytical investigations adequately explain a variety of the
characteristics observed in the experiment.Comment: 24 pages, 8 figure
Recommended from our members
Reliability analysis of RC containment structures under combined loads
This paper discusses a reliability analysis method and load combination design criteria for reinforced concrete containment structures under combined loads. The probability based reliability analysis method is briefly described. For load combination design criteria, derivations of the load factors for accidental pressure due to a design basis accident and safe shutdown earthquake (SSE) for three target limit state probabilities are presented
Regular Spectra and Universal Directionality of Emitted Radiation from a Quadrupolar Deformed Microcavity
We have investigated quasi-eigenmodes of a quadrupolar deformed microcavity
by extensive numerical calculations. The spectral structure is found to be
quite regular, which can be explained on the basis of the fact that the
microcavity is an open system. The far-field emission directions of the modes
show unexpected similarity irrespective of their distinct shapes in phase
space. This universal directionality is ascribed to the influence from the
geometry of the unstable manifolds in the corresponding ray dynamics.Comment: 10 pages 11 figure
Ground-state electric quadrupole moment of 31Al
Ground-state electric quadrupole moment of 31Al (I =5/2+, T_1/2 = 644(25) ms)
has been measured by means of the beta-NMR spectroscopy using a spin-polarized
31Al beam produced in the projectile fragmentation reaction. The obtained Q
moment, |Q_exp(31Al)| = 112(32)emb, are in agreement with conventional shell
model calculations within the sd valence space. Previous result on the magnetic
moment also supports the validity of the sd model in this isotope, and thus it
is concluded that 31Al is located outside of the island of inversion.Comment: 5 page
Integrating chytrid fungal parasites into plankton ecology: research gaps and needs
Chytridiomycota, often referred to as chytrids, can be virulent parasites with the potential to inflict mass mortalities on hosts, causing e.g. changes in phytoplankton size distributions and succession, and the delay or suppression of bloom events. Molecular environmental surveys have revealed an unexpectedly large diversity of chytrids across a wide range of aquatic ecosystems worldwide. As a result, scientific interest towards fungal parasites of phytoplankton has been gaining momentum in the past few years. Yet, we still know little about the ecology of chytrids, their life cycles, phylogeny, host specificity and range. Information on the contribution of chytrids to trophic interactions, as well as co‐evolutionary feedbacks of fungal parasitism on host populations is also limited. This paper synthesizes ideas stressing the multifaceted biological relevance of phytoplankton chytridiomycosis, resulting from discussions among an international team of chytrid researchers. It presents our view on the most pressing research needs for promoting the integration of chytrid fungi into aquatic ecology
Involvement of glomerular renin−angiotensin system (RAS) activation in the development and progression of glomerular injury
Recently, there has been a paradigm shift away from an emphasis on the role of the endocrine (circulating) renin−angiotensin system (RAS) in the regulation of the sodium and extracellular fluid balance, blood pressure, and the pathophysiology of hypertensive organ damage toward a focus on the role of tissue RAS found in many organs, including kidney. A tissue RAS implies that RAS components necessary for the production of angiotensin II (Ang II) reside within the tissue and its production is regulated within the tissue, independent of the circulating RAS. Locally produced Ang II plays a role in many physiological and pathophysiological processes such as hypertension, inflammation, oxidative stress, and tissue fibrosis. Both glomerular and tubular compartments of the kidney have the characteristics of a tissue RAS. The purpose of this article is to review the recent advances in tissue RAS research with a particular focus on the role of the glomerular RAS in the progression of renal disease
Introducing ribosomal tandem repeat barcoding for fungi
Sequence comparison and analysis of the various ribosomal genetic markers are the dominant molecular methods for identification and description of fungi. However, new environmental fungal lineages known only from DNA data reveal significant gaps in our sampling of the fungal kingdom in terms of both taxonomy and marker coverage in the reference sequence databases. To facilitate the integration of reference data from all of the ribosomal markers, we present three sets of general primers that allow for amplification of the complete ribosomal operon from the ribosomal tandem repeats. The primers cover all ribosomal markers: ETS, SSU, ITS1, 5.8S, ITS2, LSU and IGS. We coupled these primers successfully with third-generation sequencing (PacBio and Nanopore sequencing) to showcase our approach on authentic fungal herbarium specimens (Basidiomycota), aquatic chytrids (Chytridiomycota) and a poorly understood lineage of early diverging fungi (Nephridiophagidae). In particular, we were able to generate high-quality reference data with Nanopore sequencing in a high-throughput manner, showing that the generation of reference data can be achieved on a regular desktop computer without the involvement of any large-scale sequencing facility. The quality of the Nanopore generated sequences was 99.85%, which is comparable with the 99.78% accuracy described for Sanger sequencing. With this work, we hope to stimulate the generation of a new comprehensive standard of ribosomal reference data with the ultimate aim to close the huge gaps in our reference datasets
Maternally derived 15q11.2-q13.1 duplication and H19-DMR hypomethylation in a patient with Silver?Russell syndrome
Silver?Russell syndrome (SRS) is a congenital developmental disorder characterized by intrauterine and postnatal growth failure, craniofacial features (including a triangular shaped face and broad forehead), relative macrocephaly, protruding forehead, body asymmetry and feeding difficulties. Hypomethylation of the H19 differentially methylated region (DMR) on chromosome 11p15.5 is the most common cause of the SRS phenotype. We report the first SRS patient with hypomethylation of the H19-DMR and maternally derived 15q11.2-q13.1 duplication. Although her clinical manifestations overlapped with those of previously reported SRS cases, the patient’s intellectual disability and facial dysmorphic features were inconsistent with the SRS phenotype. Methylation analyses, array comparative genomic hybridization, and a FISH analysis revealed the hypomethylation of the H19-DMR and a maternally derived interstitial 5.7?Mb duplication at 15q11.2-q13.1 encompassing the Prader?Willi/Angelman critical region in the patient. On the basis of the genetic and clinical findings in the present and previously reported cases, it is unlikely that the 15q duplication in the patient led to the development of hypomethylation of the H19-DMR and it is reasonable to consider that the characteristic phenotype in the patient was caused by the coexistence of the two (epi)genetic conditions. Further studies are needed to clarify the mechanisms leading to methylation aberrations in SRS
- …