987 research outputs found
Parasitic chytrids could promote copepod survival by mediating material transfer from inedible diatoms
Diatoms form large spring blooms in lakes and oceans, providing fuel for higher trophic levels at the start of the growing season. Some of the diatom blooms, however, are not grazed by filter-feeding zooplankton like Daphnia due to their large size. Several of these large diatoms are susceptible to chytrid infections. Zoospores of chytrids appeared to be excellent food for Daphnia, both in terms of size, shape, and quality (PUFAs and cholesterol). Thus, zoospores of chytrids can bridge the gap between inedible diatoms and Daphnia. In order to examine the effects of diatoms and chytrids on the survival of copepods, we performed one grazing and one survival experiment. The grazing experiment revealed that the diatom, Asterionella formosa, was not grazed by the copepod, Eudiaptomus gracilis, even after being infected by the chytrid Zygorhizidium planktonicum. However, carbon and nitrogen concentrations were significantly reduced by E. gracilis only when A. formosa was infected by Z. planktonicum, indicating that the chytrids might facilitate material transfer from inedible diatoms to the copepods. The survival experiment revealed that E. gracilis lived shorter with A. formosa than with the cryptophyta Cryptomonas pyrenoidifera. However, the survival of E. gracilis increased significantly in the treatment where A. formosa cells were infected by Z. planktonicum. Since E. gracilis could not graze A. formosa cells due to their large colonial forms, E. gracilis may acquire nutrients by grazing on the zoospores, and were so able to survive in the presence of the A. formosa. This provides new insights into the role of parasitic fungi in aquatic food webs, where chytrids may improve copepod survival during diatom blooms.
Regular Spectra and Universal Directionality of Emitted Radiation from a Quadrupolar Deformed Microcavity
We have investigated quasi-eigenmodes of a quadrupolar deformed microcavity
by extensive numerical calculations. The spectral structure is found to be
quite regular, which can be explained on the basis of the fact that the
microcavity is an open system. The far-field emission directions of the modes
show unexpected similarity irrespective of their distinct shapes in phase
space. This universal directionality is ascribed to the influence from the
geometry of the unstable manifolds in the corresponding ray dynamics.Comment: 10 pages 11 figure
Ground-state electric quadrupole moment of 31Al
Ground-state electric quadrupole moment of 31Al (I =5/2+, T_1/2 = 644(25) ms)
has been measured by means of the beta-NMR spectroscopy using a spin-polarized
31Al beam produced in the projectile fragmentation reaction. The obtained Q
moment, |Q_exp(31Al)| = 112(32)emb, are in agreement with conventional shell
model calculations within the sd valence space. Previous result on the magnetic
moment also supports the validity of the sd model in this isotope, and thus it
is concluded that 31Al is located outside of the island of inversion.Comment: 5 page
Integrating chytrid fungal parasites into plankton ecology: research gaps and needs
Chytridiomycota, often referred to as chytrids, can be virulent parasites with the potential to inflict mass mortalities on hosts, causing e.g. changes in phytoplankton size distributions and succession, and the delay or suppression of bloom events. Molecular environmental surveys have revealed an unexpectedly large diversity of chytrids across a wide range of aquatic ecosystems worldwide. As a result, scientific interest towards fungal parasites of phytoplankton has been gaining momentum in the past few years. Yet, we still know little about the ecology of chytrids, their life cycles, phylogeny, host specificity and range. Information on the contribution of chytrids to trophic interactions, as well as co‐evolutionary feedbacks of fungal parasitism on host populations is also limited. This paper synthesizes ideas stressing the multifaceted biological relevance of phytoplankton chytridiomycosis, resulting from discussions among an international team of chytrid researchers. It presents our view on the most pressing research needs for promoting the integration of chytrid fungi into aquatic ecology
Imprinting disorders: a group of congenital disorders with overlapping patterns of molecular changes affecting imprinted loci.
Congenital imprinting disorders (IDs) are characterised by molecular changes affecting imprinted chromosomal regions and genes, i.e. genes that are expressed in a parent-of-origin specific manner. Recent years have seen a great expansion in the range of alterations in regulation, dosage or DNA sequence shown to disturb imprinted gene expression, and the correspondingly broad range of resultant clinical syndromes. At the same time, however, it has become clear that this diversity of IDs has common underlying principles, not only in shared molecular mechanisms, but also in interrelated clinical impacts upon growth, development and metabolism. Thus, detailed and systematic analysis of IDs can not only identify unifying principles of molecular epigenetics in health and disease, but also support personalisation of diagnosis and management for individual patients and families.All authors are members of the EUCID.net network, funded by COST (BM1208). TE is funded by the German Ministry of research and education (01GM1513B). GPdN is funded by I3SNS Program of the Spanish Ministry of Health (CP03/0064; SIVI 1395/09), Instituto de Salud Carlos III (PI13/00467) and Basque Department of Health (GV2014/111017).This is the final version of the article. It first appeared from BioMed Central via http://dx.doi.org/10.1186/s13148-015-0143-
Microbial transformations of selenite by methane-oxidizing bacteria
Abstract Methane oxidizing bacteria are well known for their role in the global methane cycle and their potential for microbial transformation of wide range of hydrocarbon and chlorinated hydrocarbon pollution. Recently, it has also emerged that methane-oxidizing bacteria interact with inorganic pollutants in the environment. Here we report what we believe to be the first study of the interaction of pure strains of methane-oxidizing bacteria with selenite. Results indicate that the commonly used laboratory model strains of methane oxidizing bacteria, Methylococcus capsulatus (Bath) and Methylosinus trichosporium OB3b are both able to reduce the toxic selenite (SeO32-) but not selenate (SeO42-) to red spherical nanoparticulate elemental selenium (Se0), which was characterised via EDX and EXAFS. The cultures also produced volatile selenium-containing species, which suggests that both strains may have an additional activity that can either transform Se0 or selenite into volatile methylated forms of selenium. Transmission electron microscopy (TEM) measurements and experiments with the cell fractions: cytoplasm, cell wall and cell membrane show that the nanoparticles are formed mainly on the cell wall. Collectively these results are promising for the use of methane-oxidizing bacteria for bioremediation or suggest possible uses in the production of selenium nanoparticles for biotechnology
Novel internal regulators and candidate miRNAs within miR-379/miR-656 miRNA cluster can alter cellular phenotype of human glioblastoma
Clustered miRNAs can affect functioning of downstream pathways due to possible coordinated function. We
observed 78-88% of the miR-379/miR-656 cluster (C14MC) miRNAs were downregulated in three sub-types
of diffuse gliomas, which was also corroborated with analysis from The Cancer Genome Atlas (TCGA)
datasets. The miRNA expression levels decreased with increasing tumor grade, indicating this
downregulation as an early event in gliomagenesis. Higher expression of the C14MC miRNAs significantly
improved glioblastioma prognosis (Pearson’s r=0.62; p<3.08e-22). ENCODE meta-data analysis, followed by
reporter assays validated existence of two novel internal regulators within C14MC. CRISPR activation of the
most efficient internal regulator specifically induced members of the downstream miRNA sub-cluster and
apoptosis in glioblastoma cells. Luciferase assays validated novel targets for miR-134 and miR-485-5p, two
miRNAs from C14MC with the most number of target genes relevant for glioma. Overexpression of miR-134
and miR-485-5p in human glioblastoma cells suppressed invasion and proliferation, respectively.
Furthermore, apoptosis was induced by both miRs, individually and in combination. The results emphasize
the tumor suppressive role of C14MC in diffuse gliomas, and identifies two specific miRNAs with potential
therapeutic value and towards better disease management and therapy
EMQN best practice guidelines for the molecular genetic testing and reporting of chromosome 11p15 imprinting disorders: Silver–Russell and Beckwith–Wiedemann syndrome
Molecular genetic testing for the 11p15-associated imprinting disorders Silver–Russell and Beckwith–Wiedemann syndrome (SRS, BWS) is challenging because of the molecular heterogeneity and complexity of the affected imprinted regions. With the growing knowledge on the molecular basis of these disorders and the demand for molecular testing, it turned out that there is an urgent need for a standardized molecular diagnostic testing and reporting strategy. Based on the results from the first external pilot quality assessment schemes organized by the European Molecular Quality Network (EMQN) in 2014 and in context with activities of the European Network of Imprinting Disorders (EUCID.net) towards a consensus in diagnostics and management of SRS and BWS, best practice guidelines have now been developed. Members of institutions working in the field of SRS and BWS diagnostics were invited to comment, and in the light of their feedback amendments were made. The final document was ratified in the course of an EMQN best practice guideline meeting and is in accordance with the general SRS and BWS consensus guidelines, which are in preparation. These guidelines are based on the knowledge acquired from peer-reviewed and published data, as well as observations of the authors in their practice. However, these guidelines can only provide a snapshot of current knowledge at the time of manuscript submission and readers are advised to keep up with the literature
Derivation of CPT resonance signals from density-matrix equations with all relevant sublevels of Cs atoms and confirmation of experimental results
Coherent-population-trapping resonance is a quantum interference effect that
appears in the two-photon transitions between the ground-state hyperfine levels
of alkali atoms and is often utilized in miniature clock devices. To
quantitatively understand and predict the performance of this phenomenon, it is
necessary to consider the transitions and relaxations between all hyperfine
Zeeman sublevels involved in the different excitation processes of the atom. In
this study, we constructed a computational multi-level atomic model of the
Liouville density-matrix equation for 32 Zeeman sublevels involved in the
line of Cs irradiated by two frequencies with circularly polarized
components and then simulated the amplitude and shape of the transmitted light
through a Cs vapor cell. We show that the numerical solutions of the equation
and analytical investigations adequately explain a variety of the
characteristics observed in the experiment.Comment: 24 pages, 8 figure
Recommended from our members
Reliability analysis of RC containment structures under combined loads
This paper discusses a reliability analysis method and load combination design criteria for reinforced concrete containment structures under combined loads. The probability based reliability analysis method is briefly described. For load combination design criteria, derivations of the load factors for accidental pressure due to a design basis accident and safe shutdown earthquake (SSE) for three target limit state probabilities are presented
- …
