3,121 research outputs found
What do gas-rich galaxies actually tell us about modified Newtonian dynamics?
It has recently been claimed that measurements of the baryonic Tully-Fisher
relation (BTFR), a power-law relationship between the observed baryonic masses
and outer rotation velocities of galaxies, support the predictions of modified
Newtonian dynamics for the slope and scatter in the relation, while challenging
the cold dark matter (CDM) paradigm. We investigate these claims, and find
that: 1) the scatter in the data used to determine the BTFR is in conflict with
observational uncertainties on the data; 2) these data do not make strong
distinctions regarding the best-fit BTFR parameters; 3) the literature contains
a wide variety of measurements of the BTFR, many of which are discrepant with
the recent results; and 4) the claimed CDM "prediction" for the BTFR is a gross
oversimplification of the complex galaxy-scale physics involved. We conclude
that the BTFR is currently untrustworthy as a test of CDM.Comment: 5 pages, 2 figures; minor revisions to match published versio
C-130 Advanced Technology Center wing box conceptual design/cost study
A conceptual design was developed by Northrop/LTV for an advanced C-130 Center Wing Box (CWB) which could meet the severe mission requirements of the SOF C-130 aircraft. The goals for the advanced technology CWB relative to the current C-130H CWB were: (1) the same acquisition cost; (2) lower operating support costs; (3) equal or lower weight; (4) a 30,000 hour service life for the SOF mission; and (5) minimum impact on the current maintenance concept. Initially, the structural arrangement, weight, external and internal loads, fatigue spectrum, flutter envelope and design criteria for the SOF C-130 aircraft CWB were developed. An advanced materials assessment was then conducted to determine the suitability of advanced materials for a 1994 production availability and detailed trade studies were performed on candidate CWB conceptual designs. Finally, a life-cycle cost analysis was performed on the advanced CWB. The study results showed that a hybrid composite/metallic CWB could meet the severe SOF design requirements, reduce the CWB weight by 14 pct., and was cost effective relative to an all metal beefed up C-130H CWB
Two-year trajectory of fall risk in people with Parkinson disease: a latent class analysis
Published in final edited form as:
Arch Phys Med Rehabil. 2016 March ; 97(3): 372–379.e1. doi:10.1016/j.apmr.2015.10.105.OBJECTIVE: To examine fall risk trajectories occurring naturally in a sample of individuals with early to middle stage Parkinson disease (PD).
DESIGN: Latent class analysis, specifically growth mixture modeling (GMM), of longitudinal fall risk trajectories.
SETTING: Assessments were conducted at 1 of 4 universities.
PARTICIPANTS: Community-dwelling participants with PD of a longitudinal cohort study who attended at least 2 of 5 assessments over a 2-year follow-up period (N=230).
INTERVENTIONS: Not applicable.
MAIN OUTCOME MEASURES: Fall risk trajectory (low, medium, or high risk) and stability of fall risk trajectory (stable or fluctuating). Fall risk was determined at 6 monthly intervals using a simple clinical tool based on fall history, freezing of gait, and gait speed.
RESULTS: The GMM optimally grouped participants into 3 fall risk trajectories that closely mirrored baseline fall risk status (P=.001). The high fall risk trajectory was most common (42.6%) and included participants with longer and more severe disease and with higher postural instability and gait disability (PIGD) scores than the low and medium fall risk trajectories (P<.001). Fluctuating fall risk (posterior probability <0.8 of belonging to any trajectory) was found in only 22.6% of the sample, most commonly among individuals who were transitioning to PIGD predominance.
CONCLUSIONS: Regardless of their baseline characteristics, most participants had clear and stable fall risk trajectories over 2 years. Further investigation is required to determine whether interventions to improve gait and balance may improve fall risk trajectories in people with PD.Supported by the Davis Phinney Foundation, the Parkinson's Disease Foundation, National Institutes of Health (NIH) (grant nos. NIH R01 NS077959 and NIH UL1 TR000448), the Massachusetts and Utah Chapters of the American Parkinson Disease Association (APDA), the Greater St Louis Chapter of the APDA, and the APDA Center for Advanced Research at Washington University. (Davis Phinney Foundation; Parkinson's Disease Foundation; NIH R01 NS077959 - National Institutes of Health (NIH); NIH UL1 TR000448 - National Institutes of Health (NIH); Utah Chapter of the American Parkinson Disease Association (APDA); Greater St Louis Chapter of the APDA; APDA Center for Advanced Research at Washington University; Massachusetts Chapter of the American Parkinson Disease Association (APDA)
External validation of a simple clinical tool used to predict falls in people with Parkinson disease
Published in final edited form as:
Parkinsonism Relat Disord. 2015 August ; 21(8): 960–963. doi:10.1016/j.parkreldis.2015.05.008.BACKGROUND: Assessment of fall risk in an individual with Parkinson disease (PD) is a critical yet often time consuming component of patient care. Recently a simple clinical prediction tool based only on fall history in the previous year, freezing of gait in the past month, and gait velocity <1.1 m/s was developed and accurately predicted future falls in a sample of individuals with PD. METHODS: We sought to externally validate the utility of the tool by administering it to a different cohort of 171 individuals with PD. Falls were monitored prospectively for 6 months following predictor assessment. RESULTS: The tool accurately discriminated future fallers from non-fallers (area under the curve [AUC] = 0.83; 95% CI 0.76–0.89), comparable to the developmental study. CONCLUSION: The results validated the utility of the tool for allowing clinicians to quickly and accurately identify an individual's risk of an impending fall.Davis Phinney Foundation, Parkinson Disease Foundation, NIH, APDA. (Davis Phinney Foundation; Parkinson Disease Foundation; NIH; APDA
Separation of rare earths and other valuable metals from deep-eutectic solvents: a new alternative for the recycling of used NdFeB magnets
Deep-eutectic solvents (DESs) are used as a promising alternative to aqueous solutions for the recovery of valuable metals from NdFeB magnets. A deep-eutectic solvent based on choline chloride and lactic acid (molar ratio 1 : 2) was used for the leaching of rare earths and other metals from NdFeB magnets. A process for the separation of Fe, B and Co from Nd and Dy in the deep-eutectic solvent was developed by using the ionic liquid tricaprylmethylammonium thiocyanate (Aliquat 336 SCN, [A336][SCN]) diluted in toluene (0.9 M). The extraction parameters were optimized and stripping of B was efficiently carried out by HCl, while EDTA was employed for the recovery of Fe and Co. The separation of Nd and Dy was assessed by using two different types of extractants, a mixture of trialkylphosphine oxides (Cyanex 923) and bis(2-ethylhexyl) phosphoric acid (D2EHPA). Based on the distribution ratios, separation factors and the ease of subsequent stripping, Cyanex 923 was chosen as the most effective extractant. The purified Dy present in the less polar phase was easily recovered by stripping with water, while the Nd present in the deep-eutectic solvent was recovered by precipitation stripping with a stoichiometric amount of oxalic acid. Nd2O3 and Dy2O3 were recovered with a purity of 99.87% and 99.94%, respectively. The feasibility to scale up this separation process was corroborated by a setup of mixer-settlers and highlighted by the possibility to fully recover and reuse the deep-eutectic solvent and the less polar phases employed in the extractions. The new proposed system based on a deep-eutectic solvent combined with traditional organic extraction phases presented higher selectivities and efficiencies than the analogous aqueous system. Extended X-ray absorption fine structure (EXAFS) was employed to elucidate the different mechanisms for extraction of Co and Fe from the deep-eutectic solvent and from an aqueous solution
HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES1 Is Required for Circadian Periodicity through the Promotion of Nucleo-Cytoplasmic mRNA Export in Arabidopsis.
notes: PMCID: PMC3875725This is an open access article that is freely available in ORE or from the publisher's web site. Please cite the published version. © 2013 American Society of Plant Biologists. All rights reserved.Cold acclimation has been shown to be attenuated by the degradation of the INDUCER OF CBF EXPRESSION1 protein by the E3 ubiquitin ligase HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES1 (HOS1). However, recent work has suggested that HOS1 may have a wider range of roles in plants than previously appreciated. Here, we show that hos1 mutants are affected in circadian clock function, exhibiting a long-period phenotype in a wide range of temperature and light environments. We demonstrate that hos1 mutants accumulate polyadenylated mRNA in the nucleus and that the circadian defect in hos1 is shared by multiple mutants with aberrant mRNA export, but not in a mutant attenuated in nucleo-cytoplasmic transport of microRNAs. As revealed by RNA sequencing, hos1 exhibits gross changes to the transcriptome with genes in multiple functional categories being affected. In addition, we show that hos1 and other previously described mutants with altered mRNA export affect cold signaling in a similar manner. Our data support a model in which altered mRNA export is important for the manifestation of hos1 circadian clock defects and suggest that HOS1 may indirectly affect cold signaling through disruption of the circadian clock.Biotechnology and Biological Science Research
Counci
Seeing double with K2: Testing re-inflation with two remarkably similar planets around red giant branch stars
Despite more than 20 years since the discovery of the first gas giant planet
with an anomalously large radius, the mechanism for planet inflation remains
unknown. Here, we report the discovery of EPIC228754001.01, an inflated gas
giant planet found with the NASA K2 Mission, and a revised mass for another
inflated planet, K2-97b. These planets reside on ~9 day orbits around host
stars which recently evolved into red giants. We constrain the irradiation
history of these planets using models constrained by asteroseismology and
Keck/HIRES spectroscopy and radial velocity measurements. We measure planet
radii of 1.31 +\- 0.11 Rjup and and 1.30 +\- 0.07 Rjup, respectively. These
radii are typical for planets receiving the current irradiation, but not the
former, zero age main sequence irradiation of these planets. This suggests that
the current sizes of these planets are directly correlated to their current
irradiation. Our precise constraints of the masses and radii of the stars and
planets in these systems allow us to constrain the planetary heating efficiency
of both systems as 0.03% +0.03%/-0.02%. These results are consistent with a
planet re-inflation scenario, but suggest the efficiency of planet re-inflation
may be lower than previously theorized. Finally, we discuss the agreement
within 10% of stellar masses and radii, and planet masses, radii, and orbital
periods of both systems and speculate that this may be due to selection bias in
searching for planets around evolved stars.Comment: 18 pages, 15 figures, accepted to AJ. Figures 11, 12, and 13 are the
key figures of the pape
A Search for Binary Active Galactic Nuclei: Double-Peaked [OIII] AGN in the Sloan Digital Sky Survey
We present AGN from the Sloan Digital Sky Survey (SDSS) having double-peaked
profiles of [OIII] 5007,4959 and other narrow emission-lines, motivated by the
prospect of finding candidate binary AGN. These objects were identified by
means of a visual examination of 21,592 quasars at z < 0.7 in SDSS Data Release
7 (DR7). Of the spectra with adequate signal-to-noise, 148 spectra exhibit a
double-peaked [OIII] profile. Of these, 86 are Type 1 AGN and 62 are Type 2
AGN. Only two give the appearance of possibly being optically resolved double
AGN in the SDSS images, but many show close companions or signs of recent
interaction. Radio-detected quasars are three times more likely to exhibit a
double-peaked [OIII] profile than quasars with no detected radio flux,
suggesting a role for jet interactions in producing the double-peaked profiles.
Of the 66 broad line (Type 1) AGN that are undetected in the FIRST survey, 0.9%
show double peaked [OIII] profiles. We discuss statistical tests of the nature
of the double-peaked objects. Further study is needed to determine which of
them are binary AGN rather than disturbed narrow line regions, and how many
additional binaries may remain undetected because of insufficient line-of-sight
velocity splitting. Previous studies indicate that 0.1% of SDSS quasars are
spatially resolved binaries, with typical spacings of ~10 to 100 kpc. If a
substantial fraction of the double-peaked objects are indeed binaries, then our
results imply that binaries occur more frequently at smaller separations (< 10
kpc). This suggests that simultaneous fueling of both black holes is more
common as the binary orbit decays through these spacings.Comment: 33 pages, 5 figures, LaTeX. Major revisions. Accepted for publication
in ApJ
Development of an eight-band theory for quantum-dot heterostructures
We derive a nonsymmetrized 8-band effective-mass Hamiltonian for quantum-dot
heterostructures (QDHs) in Burt's envelope-function representation. The 8x8
radial Hamiltonian and the boundary conditions for the Schroedinger equation
are obtained for spherical QDHs. Boundary conditions for symmetrized and
nonsymmetrized radial Hamiltonians are compared with each other and with
connection rules that are commonly used to match the wave functions found from
the bulk kp Hamiltonians of two adjacent materials. Electron and hole energy
spectra in three spherical QDHs: HgS/CdS, InAs/GaAs, and GaAs/AlAs are
calculated as a function of the quantum dot radius within the approximate
symmetrized and exact nonsymmetrized 8x8 models. The parameters of dissymmetry
are shown to influence the energy levels and the wave functions of an electron
and a hole and, consequently, the energies of both intraband and interband
transitions.Comment: 36 pages, 10 figures, E-mail addresses: [email protected],
[email protected]
Bayesian Methods for Exoplanet Science
Exoplanet research is carried out at the limits of the capabilities of
current telescopes and instruments. The studied signals are weak, and often
embedded in complex systematics from instrumental, telluric, and astrophysical
sources. Combining repeated observations of periodic events, simultaneous
observations with multiple telescopes, different observation techniques, and
existing information from theory and prior research can help to disentangle the
systematics from the planetary signals, and offers synergistic advantages over
analysing observations separately. Bayesian inference provides a
self-consistent statistical framework that addresses both the necessity for
complex systematics models, and the need to combine prior information and
heterogeneous observations. This chapter offers a brief introduction to
Bayesian inference in the context of exoplanet research, with focus on time
series analysis, and finishes with an overview of a set of freely available
programming libraries.Comment: Invited revie
- …