604 research outputs found

    The Distribution of Redshifts in New Samples of Quasi-stellar Objects

    Get PDF
    Two new samples of QSOs have been constructed from recent surveys to test the hypothesis that the redshift distribution of bright QSOs is periodic in log⁥(1+z)\log(1+z). The first of these comprises 57 different redshifts among all known close pairs or multiple QSOs, with image separations ≀\leq 10\arcsec, and the second consists of 39 QSOs selected through their X-ray emission and their proximity to bright comparatively nearby active galaxies. The redshift distributions of the samples are found to exhibit distinct peaks with a periodic separation of ∌0.089\sim 0.089 in log⁥(1+z)\log(1+z) identical to that claimed in earlier samples but now extended out to higher redshift peaks z=2.63,3.45z = 2.63, 3.45 and 4.47, predicted by the formula but never seen before. The periodicity is also seen in a third sample, the 78 QSOs of the 3C and 3CR catalogues. It is present in these three datasets at an overall significance level 10−510^{-5} - 10−610^{-6}, and appears not to be explicable by spectroscopic or similar selection effects. Possible interpretations are briefly discussed.Comment: submitted for publication in the Astronomical Journal, 15 figure

    Weak Charge-Changing Flow in Expanding r-Process Environments

    Get PDF
    We assess the prospects for attaining steady nuclear flow equilibrium in expanding r-process environments where beta decay and/or neutrino capture determine the nuclear charge-changing rates. For very rapid expansions, we find that weak steady flow equilibrium normally cannot be attained. However, even when neutron capture processes freeze out in such nonequilibrium conditions, abundance ratios of nuclear species in the r-process peaks might still mimic those attained in weak steady flow. This result suggests that the r-process yield in a regime of rapid expansion can be calculated reliably only when all neutron capture, photodisintegration, and weak interaction processes are fully coupled in a dynamical calculation. We discuss the implications of these results for models of the r-process sited in rapidly expanding neutrino-heated ejecta.Comment: 21 pages, AAS LaTex, 2 postscript figure

    Possible interpretations of the magnitude-redshift relation for supernovae of type Ia

    Get PDF
    It has been shown by Riess et al. and Perlmutter et al. that the observed redshift-magnitude relation for supernovae of type Ia, which suggests that the deceleration parameter q0 is negative, can be explained in a Friedmann model with a positive cosmological constant. We show that a quasi-steady state cosmology (QSSC) model can also fit the supernova data. Since most of the emphasis and publicity have been concentrated on explanations involving the Friedmann model, we show how a good fit can be obtained to the observations in the framework of the QSSC. Using this model, we show that absorption due to intergalactic dust may play an important role. This may explain why a few of the supernovae observed show large deviations from the curve determined by the majority of the data

    Cosmology and Cosmogony in a Cyclic Universe

    Get PDF
    In this paper we discuss the properties of the quasi-steady state cosmological model (QSSC) developed in 1993 in its role as a cyclic model of the universe driven by a negative energy scalar field. We discuss the origin of such a scalar field in the primary creation process first described by F. Hoyle and J. V. Narlikar forty years ago. It is shown that the creation processes which takes place in the nuclei of galaxies are closely linked to the high energy and explosive phenomena, which are commonly observed in galaxies at all redshifts. The cyclic nature of the universe provides a natural link between the places of origin of the microwave background radiation (arising in hydrogen burning in stars), and the origin of the lightest nuclei (H, D, He3^3 and He4^4). It also allows us to relate the large scale cyclic properties of the universe to events taking place in the nuclei of galaxies. Observational evidence shows that ejection of matter and energy from these centers in the form of compact objects, gas and relativistic particles is responsible for the population of quasi-stellar objects (QSOs) and gamma-ray burst sources in the universe. In the later parts of the paper we briefly discuss the major unsolved problems of this integrated cosmological and cosmogonical scheme. These are the understanding of the origin of the intrinsic redshifts, and the periodicities in the redshift distribution of the QSOs.Comment: 51 pages including 1 figur

    Particle-Number Reprojection in the Shell Model Monte Carlo Method: Application to Nuclear Level Densities

    Full text link
    We introduce a particle-number reprojection method in the shell model Monte Carlo that enables the calculation of observables for a series of nuclei using a Monte Carlo sampling for a single nucleus. The method is used to calculate nuclear level densities in the complete (pf+g9/2)(pf+g_{9/2})-shell using a good-sign Hamiltonian. Level densities of odd-A and odd-odd nuclei are reliably extracted despite an additional sign problem. Both the mass and the TzT_z dependence of the experimental level densities are well described without any adjustable parameters. The single-particle level density parameter is found to vary smoothly with mass. The odd-even staggering observed in the calculated backshift parameter follows the experimental data more closely than do empirical formulae.Comment: 14 pages, 4 eps figures included, RevTe

    A deep X-ray observation of NGC 4258 and its surrounding field

    Get PDF
    We present a deep X-ray observation of the low-luminosity active galactic nucleus in NGC4258 (M106) using ASCA. The soft X-ray spectrum <2keV is dominated by thermal emission from optically-thin plasma with kT~0.5keV. The hard X-ray emission is clearly due to a power-law component with photon index Gamma=1.8 absorbed by a column density of N_H=8x10^22/cm^2. The power-law is readily identified with primary X-ray emission from the AGN central engine. We also clearly detect a narrow iron K-alpha emission line at 6.4keV. No broad component is detected. We suggest that the bulk of this narrow line comes from the accretion disk and, furthermore, that the power-law X-ray source which excites this line emission (which is typically identified with a disk corona) must be at least 100GM/c^2 in extent. This is in stark contrast to many higher-luminosity Seyfert galaxies which display a broad iron line indicating a small 10 GM/c^2 X-ray emitting region. It must be stressed that this study constrains the size of the X-ray emitting corona rather than the presence/absence of a radiatively efficient accretion disk in the innermost regions. If, instead, a substantial fraction of the observed narrow line originates from material not associated with the accretion disk, limits can be placed on the parameter space of possible allowed relativistically broad iron lines. By comparing our data with previous ASCA observations, we find marginal evidence for a change in absorbing column density through to the central engine, and good evidence for a change in the AGN flux.Comment: 11 pages, 9 postscript figures. Accepted for publication in Ap

    AcDc - A new code for the NLTE spectral analysis of accretion discs: application to the helium CV AM CVn

    Full text link
    We present a recently developed code for detailed NLTE calculations of accretion disc spectra of cataclysmic variables and compact X-ray binaries. Assuming a radial structure of a standard alpha-disc, the disc is divided into concentric rings. For each disc ring the solution of the radiation transfer equation and the structure equations, comprising the hydrostatic and radiative equilibrium, the population of the atomic levels as well as charge and particle conservation, is done self-consistently. Metal-line blanketing and irradiation by the central object are taken into account. As a first application, we show the influence of different disc parameters on the disc spectrum for the helium cataclysmic variable AM CVn.Comment: 7 pages, 11 figures to be published in A&

    Hybrid nature of 0846+51W1: a BL Lac object with a narrow line Seyfert 1 nucleus

    Full text link
    We have found a NLS1 nucleus in the extensively studied eruptive BL Lac, 0846+51W1, out of a large sample of NLS1 compiled from the spectroscopic dataset of SDSS DR1. Its optical spectrum can be well decomposed into three components, a power law component from the relativistic jet, a stellar component from the host galaxy, and a component from a typical NLS1 nucleus. The emission line properties of 0846+51W1, FWHM(Hbeta) ~ 1710 km s^-1 and [OIII]5007/Hbeta ~ 0.32 when it was in faint state, fulfil the conventional definition of NLS1. Strong FeII emission is detected in the SDSS spectrum, which is also typical of NLS1s. We try to estimate its central black hole mass using various techniques and find that 0846+51W1 is very likely emitting at a few times 10% L_Edd. We speculate that Seyfert-like nuclei, including NLS1s, might be concealed in a significant fraction of BL Lacs but have not been sufficiently explored due to the fact that, by definition, the optical-UV continuum of such kind of objects are often overwhelmed by the synchrotron emission.Comment: ChJAA accepte

    Molecular Gas, Dust and Star Formation in the Barred Spiral NGC 5383

    Full text link
    We present multi-wavelength (interferometer and single-dish CO J=1-0, Halpha, broadband optical and near-infrared) observations of the classic barred spiral NGC 5383. We compare the observed central gas and dust morphology to the predictions of recent hydrodynamic simulations. In the nuclear region, our observations reveal three peaks lying along a S-shaped gas and dust distribution. In contrast, the model predicts a circumnuclear ring, not the observed S-shaped distribution; moreover, the predicted surface density contrast between the central gas accumulation and the bar dust lanes is an order of magnitude larger than observed. The discrepancies are not due to unexplored model parameter space or a nuclear bar but are probably due to the vigorous (7 solar masses per year) star formation activity in the center. As is common in similar bars, the star formation rate in the bar between the bar ends and the central region is low (~0.5 solar masses per yr), despite the high gas column density in the bar dust lanes; this is generally attributed to shear and shocks. We note a tendency for the HII regions to be associated with the spurs feeding the main bar dust lanes, but these are located on the leading side of the bar. We propose that stars form in the spurs, which provide a high column density but low shear environment. HII regions can therefore be found even on the leading side of the bar because the ionizing stars pass ballistically through the dust laneComment: Accepted for publication in The Astrophysical Journal, 33 pages (includes 10 figures

    Production of neutron-rich nuclei in fragmentation reactions of 132Sn projectiles at relativistic energies

    Full text link
    The fragmentation of neutron-rich 132Sn nuclei produced in the fission of 238U projectiles at 950 MeV/u has been investigated at the FRagment Separator (FRS) at GSI. This work represents the first investigation of fragmentation of medium-mass radioactive projectiles with a large neutron excess. The measured production cross sections of the residual nuclei are relevant for the possible use of a two-stage reaction scheme (fission+fragmentation) for the production of extremely neutron-rich medium-mass nuclei in future rare-ion-beam facilities. Moreover, the new data will provide a better understanding of the "memory" effect in fragmentation reactions.Comment: 5 pages, 3 figure
    • 

    corecore