2,538 research outputs found
Stellar Differential Rotation and Coronal Timescales
We investigate the timescales of evolution of stellar coronae in response to
surface differential rotation and diffusion. To quantify this we study both the
formation time and lifetime of a magnetic flux rope in a decaying bipolar
active region. We apply a magnetic flux transport model to prescribe the
evolution of the stellar photospheric field, and use this to drive the
evolution of the coronal magnetic field via a magnetofrictional technique.
Increasing the differential rotation (i.e. decreasing the equator-pole lap
time) decreases the flux rope formation time. We find that the formation time
is dependent upon the geometric mean of the lap time and the surface diffusion
timescale. In contrast, the lifetime of flux ropes are proportional to the lap
time. With this, flux ropes on stars with a differential rotation of more than
eight times the solar value have a lifetime of less than two days. As a
consequence, we propose that features such as solar-like quiescent prominences
may not be easily observable on such stars, as the lifetimes of the flux ropes
which host the cool plasma are very short. We conclude that such high
differential rotation stars may have very dynamical coronae
Rotationally Modulated X-ray Emission from T Tauri Stars
We have modelled the rotational modulation of X-ray emission from T Tauri
stars assuming that they have isothermal, magnetically confined coronae. By
extrapolating surface magnetograms we find that T Tauri coronae are compact and
clumpy, such that rotational modulation arises from X-ray emitting regions
being eclipsed as the star rotates. Emitting regions are close to the stellar
surface and inhomogeneously distributed about the star. However some regions of
the stellar surface, which contain wind bearing open field lines, are dark in
X-rays. From simulated X-ray light curves, obtained using stellar parameters
from the Chandra Orion Ultradeep Project, we calculate X-ray periods and make
comparisons with optically determined rotation periods. We find that X-ray
periods are typically equal to, or are half of, the optical periods. Further,
we find that X-ray periods are dependent upon the stellar inclination, but that
the ratio of X-ray to optical period is independent of stellar mass and radius.Comment: 10 pages, 8 figures, accepted for publication in MNRA
The magnetic fields of forming solar-like stars
Magnetic fields play a crucial role at all stages of the formation of low
mass stars and planetary systems. In the final stages, in particular, they
control the kinematics of in-falling gas from circumstellar discs, and the
launching and collimation of spectacular outflows. The magnetic coupling with
the disc is thought to influence the rotational evolution of the star, while
magnetised stellar winds control the braking of more evolved stars and may
influence the migration of planets. Magnetic reconnection events trigger
energetic flares which irradiate circumstellar discs with high energy particles
that influence the disc chemistry and set the initial conditions for planet
formation. However, it is only in the past few years that the current
generation of optical spectropolarimeters have allowed the magnetic fields of
forming solar-like stars to be probed in unprecedented detail. In order to do
justice to the recent extensive observational programs new theoretical models
are being developed that incorporate magnetic fields with an observed degree of
complexity. In this review we draw together disparate results from the
classical electromagnetism, molecular physics/chemistry, and the geophysics
literature, and demonstrate how they can be adapted to construct models of the
large scale magnetospheres of stars and planets. We conclude by examining how
the incorporation of multipolar magnetic fields into new theoretical models
will drive future progress in the field through the elucidation of several
observational conundrums.Comment: 55 pages, review article accepted for publication in Reports on
Progress in Physics. Astro-ph version includes additional appendice
Modeling X-ray emission from stellar coronae
By extrapolating from observationally derived surface magnetograms of
low-mass stars we construct models of their coronal magnetic fields and compare
the 3D field geometry with axial multipoles. AB Dor, which has a radiative
core, has a very complex field, whereas V374 Peg, which is completely
convective, has a simple dipolar field. We calculate global X-ray emission
measures assuming that the plasma trapped along the coronal loops is in
hydrostatic equilibrium and compare the differences between assuming isothermal
coronae, or by considering a loop temperature profiles. Our preliminary results
suggest that the non-isothermal model works well for the complex field of AB
Dor, but not for the simple field of V374 Peg.Comment: 4 pages, proceedings of Cool Stars 15, St Andrews, July 2008, to be
published in the Conference Proceedings Series of the American Institute of
Physic
The relation between stellar magnetic field geometry and chromospheric activity cycles - I. The highly variable field of É Eridani at activity minimum
The young and magnetically active K dwarf Epsilon Eridani exhibits a chromospheric activity cycle of about 3 years. Previous reconstructions of its large-scale magnetic field show strong variations at yearly epochs. To understand how Epsilon Eridani's large-scale magnetic field geometry evolves over its activity cycle we focus on high cadence observations spanning 5 months at its activity minimum. Over this timespan we reconstruct 3 maps of Epsilon Eridani's large-scale magnetic field using the tomographic technique of Zeeman Doppler Imaging. The results show that at the minimum of its cycle, Epsilon Eridani's large-scale field is more complex than the simple dipolar structure of the Sun and 61 Cyg A at minimum. Additionally we observe a surprisingly rapid regeneration of a strong axisymmetric toroidal field as Epsilon Eridani emerges from its S-index activity minimum. Our results show that all stars do not exhibit the same field geometry as the Sun and this will be an important constraint for the dynamo models of active solar-type stars
Slingshot prominences, formation, ejection and cycle frequency in cool stars
Stars lose mass and angular momentum during their lifetimes. Observations of H-alpha absorption of a number of low mass stars, show prominences transiting the stellar disc and being ejected into the extended stellar wind. Analytic modelling have shown these M-dwarf coronal structures growing to be orders of magnitude larger than their solar counterparts. This makes prominences responsible for mass and angular momentum loss comparable to that due to the stellar wind. We present results from a numerical study which used magnetohydrodynamic simulations to model the balance between gravity, magnetic confinement, and rotational acceleration. This allows us to study the time dependent nature of prominence formation. We demonstrate that a prominence, formed beyond the co-rotation radius, is ejected into the extended stellar wind in the slingshot prominence paradigm. Mass, angular momentum flux and ejection frequency have been calculated for a representative cool star, in the so-called Thermal Non-Equilibrium (TNE) regime.Peer reviewe
Graph-Embedding Empowered Entity Retrieval
In this research, we improve upon the current state of the art in entity
retrieval by re-ranking the result list using graph embeddings. The paper shows
that graph embeddings are useful for entity-oriented search tasks. We
demonstrate empirically that encoding information from the knowledge graph into
(graph) embeddings contributes to a higher increase in effectiveness of entity
retrieval results than using plain word embeddings. We analyze the impact of
the accuracy of the entity linker on the overall retrieval effectiveness. Our
analysis further deploys the cluster hypothesis to explain the observed
advantages of graph embeddings over the more widely used word embeddings, for
user tasks involving ranking entities
Mechanical equilibrium of hot, largeâscale magnetic loops on T Tauri stars
The most extended, closed magnetic loops inferred on T Tauri stars confine hot, Xârayâemitting plasma at distances from the stellar surface beyond the Xârayâbright corona and closed largeâscale field, distances comparable to the corotation radius. Mechanical equilibrium models have shown that dense condensations, or âslingshot prominencesâ, can rise to great heights due to their density and temperatures cooler than their environs. On T Tauri stars, however, we detect plasma at temperatures hotter than the ambient coronal temperature. By previous model results, these loops should not reach the inferred heights of tens of stellar radii where they likely no longer have the support of the external field against magnetic tension. In this work, we consider the effects of a stellar wind and show that indeed hot loops that are negatively buoyant can attain a mechanical equilibrium at heights above the typical extent of the closed corona and the corotation radius.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90589/1/j.1365-2966.2012.20434.x.pd
- âŠ