2,538 research outputs found

    Stellar Differential Rotation and Coronal Timescales

    Get PDF
    We investigate the timescales of evolution of stellar coronae in response to surface differential rotation and diffusion. To quantify this we study both the formation time and lifetime of a magnetic flux rope in a decaying bipolar active region. We apply a magnetic flux transport model to prescribe the evolution of the stellar photospheric field, and use this to drive the evolution of the coronal magnetic field via a magnetofrictional technique. Increasing the differential rotation (i.e. decreasing the equator-pole lap time) decreases the flux rope formation time. We find that the formation time is dependent upon the geometric mean of the lap time and the surface diffusion timescale. In contrast, the lifetime of flux ropes are proportional to the lap time. With this, flux ropes on stars with a differential rotation of more than eight times the solar value have a lifetime of less than two days. As a consequence, we propose that features such as solar-like quiescent prominences may not be easily observable on such stars, as the lifetimes of the flux ropes which host the cool plasma are very short. We conclude that such high differential rotation stars may have very dynamical coronae

    Rotationally Modulated X-ray Emission from T Tauri Stars

    Get PDF
    We have modelled the rotational modulation of X-ray emission from T Tauri stars assuming that they have isothermal, magnetically confined coronae. By extrapolating surface magnetograms we find that T Tauri coronae are compact and clumpy, such that rotational modulation arises from X-ray emitting regions being eclipsed as the star rotates. Emitting regions are close to the stellar surface and inhomogeneously distributed about the star. However some regions of the stellar surface, which contain wind bearing open field lines, are dark in X-rays. From simulated X-ray light curves, obtained using stellar parameters from the Chandra Orion Ultradeep Project, we calculate X-ray periods and make comparisons with optically determined rotation periods. We find that X-ray periods are typically equal to, or are half of, the optical periods. Further, we find that X-ray periods are dependent upon the stellar inclination, but that the ratio of X-ray to optical period is independent of stellar mass and radius.Comment: 10 pages, 8 figures, accepted for publication in MNRA

    The magnetic fields of forming solar-like stars

    Full text link
    Magnetic fields play a crucial role at all stages of the formation of low mass stars and planetary systems. In the final stages, in particular, they control the kinematics of in-falling gas from circumstellar discs, and the launching and collimation of spectacular outflows. The magnetic coupling with the disc is thought to influence the rotational evolution of the star, while magnetised stellar winds control the braking of more evolved stars and may influence the migration of planets. Magnetic reconnection events trigger energetic flares which irradiate circumstellar discs with high energy particles that influence the disc chemistry and set the initial conditions for planet formation. However, it is only in the past few years that the current generation of optical spectropolarimeters have allowed the magnetic fields of forming solar-like stars to be probed in unprecedented detail. In order to do justice to the recent extensive observational programs new theoretical models are being developed that incorporate magnetic fields with an observed degree of complexity. In this review we draw together disparate results from the classical electromagnetism, molecular physics/chemistry, and the geophysics literature, and demonstrate how they can be adapted to construct models of the large scale magnetospheres of stars and planets. We conclude by examining how the incorporation of multipolar magnetic fields into new theoretical models will drive future progress in the field through the elucidation of several observational conundrums.Comment: 55 pages, review article accepted for publication in Reports on Progress in Physics. Astro-ph version includes additional appendice

    Modeling X-ray emission from stellar coronae

    Full text link
    By extrapolating from observationally derived surface magnetograms of low-mass stars we construct models of their coronal magnetic fields and compare the 3D field geometry with axial multipoles. AB Dor, which has a radiative core, has a very complex field, whereas V374 Peg, which is completely convective, has a simple dipolar field. We calculate global X-ray emission measures assuming that the plasma trapped along the coronal loops is in hydrostatic equilibrium and compare the differences between assuming isothermal coronae, or by considering a loop temperature profiles. Our preliminary results suggest that the non-isothermal model works well for the complex field of AB Dor, but not for the simple field of V374 Peg.Comment: 4 pages, proceedings of Cool Stars 15, St Andrews, July 2008, to be published in the Conference Proceedings Series of the American Institute of Physic

    The relation between stellar magnetic field geometry and chromospheric activity cycles - I. The highly variable field of ɛ Eridani at activity minimum

    Get PDF
    The young and magnetically active K dwarf Epsilon Eridani exhibits a chromospheric activity cycle of about 3 years. Previous reconstructions of its large-scale magnetic field show strong variations at yearly epochs. To understand how Epsilon Eridani's large-scale magnetic field geometry evolves over its activity cycle we focus on high cadence observations spanning 5 months at its activity minimum. Over this timespan we reconstruct 3 maps of Epsilon Eridani's large-scale magnetic field using the tomographic technique of Zeeman Doppler Imaging. The results show that at the minimum of its cycle, Epsilon Eridani's large-scale field is more complex than the simple dipolar structure of the Sun and 61 Cyg A at minimum. Additionally we observe a surprisingly rapid regeneration of a strong axisymmetric toroidal field as Epsilon Eridani emerges from its S-index activity minimum. Our results show that all stars do not exhibit the same field geometry as the Sun and this will be an important constraint for the dynamo models of active solar-type stars

    Slingshot prominences, formation, ejection and cycle frequency in cool stars

    Get PDF
    Stars lose mass and angular momentum during their lifetimes. Observations of H-alpha absorption of a number of low mass stars, show prominences transiting the stellar disc and being ejected into the extended stellar wind. Analytic modelling have shown these M-dwarf coronal structures growing to be orders of magnitude larger than their solar counterparts. This makes prominences responsible for mass and angular momentum loss comparable to that due to the stellar wind. We present results from a numerical study which used magnetohydrodynamic simulations to model the balance between gravity, magnetic confinement, and rotational acceleration. This allows us to study the time dependent nature of prominence formation. We demonstrate that a prominence, formed beyond the co-rotation radius, is ejected into the extended stellar wind in the slingshot prominence paradigm. Mass, angular momentum flux and ejection frequency have been calculated for a representative cool star, in the so-called Thermal Non-Equilibrium (TNE) regime.Peer reviewe

    Graph-Embedding Empowered Entity Retrieval

    Full text link
    In this research, we improve upon the current state of the art in entity retrieval by re-ranking the result list using graph embeddings. The paper shows that graph embeddings are useful for entity-oriented search tasks. We demonstrate empirically that encoding information from the knowledge graph into (graph) embeddings contributes to a higher increase in effectiveness of entity retrieval results than using plain word embeddings. We analyze the impact of the accuracy of the entity linker on the overall retrieval effectiveness. Our analysis further deploys the cluster hypothesis to explain the observed advantages of graph embeddings over the more widely used word embeddings, for user tasks involving ranking entities

    Mechanical equilibrium of hot, large‐scale magnetic loops on T Tauri stars

    Get PDF
    The most extended, closed magnetic loops inferred on T Tauri stars confine hot, X‐ray‐emitting plasma at distances from the stellar surface beyond the X‐ray‐bright corona and closed large‐scale field, distances comparable to the corotation radius. Mechanical equilibrium models have shown that dense condensations, or ‘slingshot prominences’, can rise to great heights due to their density and temperatures cooler than their environs. On T Tauri stars, however, we detect plasma at temperatures hotter than the ambient coronal temperature. By previous model results, these loops should not reach the inferred heights of tens of stellar radii where they likely no longer have the support of the external field against magnetic tension. In this work, we consider the effects of a stellar wind and show that indeed hot loops that are negatively buoyant can attain a mechanical equilibrium at heights above the typical extent of the closed corona and the corotation radius.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90589/1/j.1365-2966.2012.20434.x.pd
    • 

    corecore