2,806 research outputs found

    Binaries among Ap and Am stars

    Get PDF
    The results of long-term surveys of radial velocities of cool Ap and Am stars are presented. There are two samples, one of about 100 Ap stars and the other of 86 Am stars. Both have been observed with the CORAVEL scanner from Observatoire de Haute-Provence (CNRS), France. The conspicuous lack of short-period binaries among cool Ap stars seems confirmed, although this may be the result of an observational bias; one system has a period as short as 1.6 days. A dozen new orbits could be determined, including that of one SB2 system. Considering the mass functions of 68 binaries from the literature and from our work, we conclude that the distribution of the mass ratios is the same for the Bp-Ap stars than for normal G dwarfs. Among the Am stars, we found 52 binaries, i.e. 60%; an orbit could be computed for 29 of them. Among these 29, there are 7 SB2 systems, one triple and one quadruple system. The 21 stars with an apparently constant radial velocity may show up later as long-period binaries with a high eccentricity. The mass functions of the SB1 systems are compatible with cool main-sequence companions, also suggested by ongoing spectral observations.Comment: 5 pages, 2 figures, to appear in: Proc. of the 26th workshop of the European Working Group on CP stars, Contrib. Astr. Obs. Skalnate Pleso Vol. 27, No

    Multiplicity among peculiar A stars I. The Ap stars HD 8441 and HD 137909, and the Am stars HD 43478 and HD 96391

    Get PDF
    We present the first results of a radial-velocity survey of cool Ap and Am stars. HD 8441 is not only a double system with P = 106.357 days, but is a triple one, the third companion having an orbital period larger than 5000 days. Improved orbital elements are given for the classical Ap star HD 137909 = beta CrB by combining our radial velocities with published ones. We yield new orbital elements of the two Am, SB2 binaries HD 43478 and HD 96391. Good estimates of the individual masses of the components of HD 43478 can be given thanks to the eclipses of this system, for which an approximate photometric solution is also proposed.Comment: 10 pages, 10 figures, accepted for publication in A&A

    Vector-soliton collision dynamics in nonlinear optical fibers

    Full text link
    We consider the interactions of two identical, orthogonally polarized vector solitons in a nonlinear optical fiber with two polarization directions, described by a coupled pair of nonlinear Schroedinger equations. We study a low-dimensional model system of Hamiltonian ODE derived by Ueda and Kath and also studied by Tan and Yang. We derive a further simplified model which has similar dynamics but is more amenable to analysis. Sufficiently fast solitons move by each other without much interaction, but below a critical velocity the solitons may be captured. In certain bands of initial velocities the solitons are initially captured, but separate after passing each other twice, a phenomenon known as the two-bounce or two-pass resonance. We derive an analytic formula for the critical velocity. Using matched asymptotic expansions for separatrix crossing, we determine the location of these "resonance windows." Numerical simulations of the ODE models show they compare quite well with the asymptotic theory.Comment: 32 pages, submitted to Physical Review

    Oscillating red giants in the CoRoT exo-field: Asteroseismic mass and radius determination

    Get PDF
    Context. Observations and analysis of solar-type oscillations in red-giant stars is an emerging aspect of asteroseismic analysis with a number of open questions yet to be explored. Although stochastic oscillations have previously been detected in red giants from both radial velocity and photometric measurements, those data were either too short or had sampling that was not complete enough to perform a detailed data analysis of the variability. The quality and quantity of photometric data as provided by the CoRoT satellite is necessary to provide a breakthrough in observing p-mode oscillations in red giants. We have analyzed continuous photometric time-series of about 11 400 relatively faint stars obtained in the exofield of CoRoT during the first 150 days long-run campaign from May to October 2007. We find several hundred stars showing a clear power excess in a frequency and amplitude range expected for red-giant pulsators. In this paper we present first results on a sub-sample of these stars. Aims. Knowing reliable fundamental parameters like mass and radius is essential for detailed asteroseismic studies of red-giant stars. As the CoRoT exofield targets are relatively faint (11-16 mag) there are no (or only weak) constraints on the star's location in the H-R diagram. We therefore aim to extract information about such fundamental parameters solely from the available time series. Methods. We model the convective background noise and the power excess hump due to pulsation with a global model fit and deduce reliable estimates for the stellar mass and radius from scaling relations for the frequency of maximum oscillation power and the characteristic frequency separation.Comment: 10 pages, 7 figures, accepted for publication in A&

    Effects of rotational mixing on the asteroseismic properties of solar-type stars

    Full text link
    The influence of rotational mixing on the evolution and asteroseismic properties of solar-type stars is studied. Rotational mixing changes the global properties of a solar-type star with a significant increase of the effective temperature resulting in a shift of the evolutionary track to the blue part of the HR diagram. These differences are related to changes of the chemical composition, because rotational mixing counteracts the effects of atomic diffusion leading to larger helium surface abundances for rotating models than for non-rotating ones. Higher values of the large frequency separation are then found for rotating models than for non-rotating ones at the same evolutionary stage, because the increase of the effective temperature leads to a smaller radius and hence to an increase of the stellar mean density. Rotational mixing also has a considerable impact on the structure and chemical composition of the central stellar layers by bringing fresh hydrogen fuel to the core, thereby enhancing the main-sequence lifetime. The increase of the central hydrogen abundance together with the change of the chemical profiles in the central layers result in a significant increase of the values of the small frequency separations and of the ratio of the small to large separations for models including shellular rotation. This increase is clearly seen for models with the same age sharing the same initial parameters except for the inclusion of rotation as well as for models with the same global stellar parameters and in particular the same location in the HR diagram. By computing rotating models of solar-type stars including the effects of a dynamo that possibly occurs in the radiative zone, we find that the efficiency of rotational mixing is strongly reduced when the effects of magnetic fields are taken into account, in contrast to what happens in massive stars.Comment: 11 pages, 15 figures, accepted for publication in A&
    corecore