10,341 research outputs found

    Schwinger-Boson Mean-Field Theory of Mixed-Spin Antiferromagnet L2BaNiO5L_2BaNiO_5

    Full text link
    The Schwinger-boson mean-field theory is used to study the three-dimensional antiferromagnetic ordering and excitations in compounds L2BaNiO5L_2BaNiO_5, a large family of quasi-one-dimensional mixed-spin antiferromagnet. To investigate magnetic properties of these compounds, we introduce a three-dimensional mixed-spin antiferromagnetic Heisenberg model based on experimental results for the crystal structure of L2BaNiO5L_2BaNiO_5. This model can explain the experimental discovery of coexistence of Haldane gap and antiferromagnetic long-range order below N\'{e}el temperature. Properties such as the low-lying excitations, magnetizations of NiNi and rare-earth ions, N\'{e}el temperatures of different compounds, and the behavior of Haldane gap below the N\'{e}el temperature are investigated within this model, and the results are in good agreement with neutron scattering experiments.Comment: 12 pages, 6 figure

    Direct observation of quantized interlayer vortex flow and vortex pinning distribution in high-Tc La_(1.87)Sr_(0.13)CuO_4 single crystals

    Full text link
    A scanning superconducting quantum interference device (SQUID) microscope (SSM) is used to study the magnetic imaging of dynamic motion of quantized interlayer vortices induced by the Lorentz force in anisotropic high-Tc La_(1.87)Sr_(0.13)CuO_4 single crystals. It is found that 3 modes of flux motion switch depending on the transport current. By increasing the current a transition from the creep-like behavior of vortices to a steady flow of vortices was observed. Even higher current induced a continuous expansion of vortex-flow area indicating an inhomogeneous distribution of various pinning centers.Comment: 16 pages, 4 figure

    SMaSH: A Benchmarking Toolkit for Human Genome Variant Calling

    Full text link
    Motivation: Computational methods are essential to extract actionable information from raw sequencing data, and to thus fulfill the promise of next-generation sequencing technology. Unfortunately, computational tools developed to call variants from human sequencing data disagree on many of their predictions, and current methods to evaluate accuracy and computational performance are ad-hoc and incomplete. Agreement on benchmarking variant calling methods would stimulate development of genomic processing tools and facilitate communication among researchers. Results: We propose SMaSH, a benchmarking methodology for evaluating human genome variant calling algorithms. We generate synthetic datasets, organize and interpret a wide range of existing benchmarking data for real genomes, and propose a set of accuracy and computational performance metrics for evaluating variant calling methods on this benchmarking data. Moreover, we illustrate the utility of SMaSH to evaluate the performance of some leading single nucleotide polymorphism (SNP), indel, and structural variant calling algorithms. Availability: We provide free and open access online to the SMaSH toolkit, along with detailed documentation, at smash.cs.berkeley.edu

    Periodic Oscillations of Josephson-Vortex Flow Resistance in Oxygen-Deficient Y1Ba2Cu3Ox

    Full text link
    We measured the Josephson vortex flow resistance as a function of magnetic field applied parallel to the ab-planes using annealed Y1Ba2Cu3Ox intrinsic Josephson junctions having high anisotropy (around 40) by oxygen content reduction. Periodic oscillations were observed in magnetic fields above 45-58 kOe, corresponding to dense-dilute boundary for Josephson vortex lattice. The observed period of oscillations, agrees well with the increase of one fluxon per two junctions (HpH_{p}\textit{=Φ\Phi }0_{0}\textit{/2Ls}), may correspond to formation of a triangular lattice of Josephson vortices as has been reported by Ooi et al. for highly anisotropic (larger than 200) Bi-2212 intrinsic Josephson junctions.Comment: 5 pages, 4 figure

    Angle-dependence of the Hall effect in HgBa2CaCu2O6 thin films

    Full text link
    Superconducting compounds of the family Hg-Ba-Ca-Cu-O have been the subject of intense study since the current record-holder for the highest critical temperature of a superconductor belongs to this class of materials. Thin films of the compound with two adjacent copper-oxide layers and a critical temperature of about 120 K were prepared by a two-step process that consists of the pulsed-laser deposition of precursor films and the subsequent annealing in mercury-vapor atmosphere. Like some other high-temperature superconductors, Hg-Ba-Ca-Cu-O exhibits a specific anomaly of the Hall effect, a double-sign change of the Hall coefficient close to the superconducting transition. We have investigated this phenomenon by measurements of the Hall effect at different angles between the magnetic field direction and the crystallographic c-axis. The results concerning the upper part of the transition, where the first sign change occurs, are discussed in terms of the renormalized fluctuation model for the Hall conductivity, adapted through the field rescaling procedure in order to take into account the arbitrary orientation of the magnetic field.Comment: to be published in Phys. Rev.

    Seyfert's Sextet: A Slowly Dissolving Stephan's Quintet?

    Get PDF
    We present a multiwavelength study of the highly evolved compact galaxy group known as Seyfert's Sextet (HCG79: SS). We interpret SS as a 2-3 Gyr more evolved analog of Stephan's Quintet (HCG92: SQ). We postulate that SS formed by sequential acquisition of 4-5 primarily late-type field galaxies. Four of the five galaxies show an early-type morphology which is likely the result of secular evolution driven by gas stripping. Stellar stripping has produced a massive/luminous halo and embedded galaxies that are overluminous for their size. These are interpreted as remnant bulges of the accreted spirals. H79d could be interpreted as the most recent intruder being the only galaxy with an intact ISM and uncertain evidence for tidal perturbation. In addition to stripping activity we find evidence for past accretion events. H79b (NGC6027) shows a strong counter-rotating emission line component interpreted as an accreted dwarf spiral. H79a shows evidence for an infalling component of gas representing feedback or possible cross fueling by H79d. The biggest challenge to this scenario involves the low gas fraction in the group. If SS formed from normal field spirals then much of the gas is missing. Finally, despite its advanced stage of evolution, we find no evidence for major mergers and infer that SS (and SQ) are telling us that such groups coalesce via slow dissolution.Comment: 70 pages, 19 figures, 15 tables - accepted for publication in the Astronomical Journa
    • …
    corecore