Superconducting compounds of the family Hg-Ba-Ca-Cu-O have been the subject
of intense study since the current record-holder for the highest critical
temperature of a superconductor belongs to this class of materials. Thin films
of the compound with two adjacent copper-oxide layers and a critical
temperature of about 120 K were prepared by a two-step process that consists of
the pulsed-laser deposition of precursor films and the subsequent annealing in
mercury-vapor atmosphere. Like some other high-temperature superconductors,
Hg-Ba-Ca-Cu-O exhibits a specific anomaly of the Hall effect, a double-sign
change of the Hall coefficient close to the superconducting transition. We have
investigated this phenomenon by measurements of the Hall effect at different
angles between the magnetic field direction and the crystallographic c-axis.
The results concerning the upper part of the transition, where the first sign
change occurs, are discussed in terms of the renormalized fluctuation model for
the Hall conductivity, adapted through the field rescaling procedure in order
to take into account the arbitrary orientation of the magnetic field.Comment: to be published in Phys. Rev.